/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btDiscreteDynamicsWorld.h" //collision detection #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" #include "BulletCollision/CollisionShapes/btCollisionShape.h" #include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" #include //rigidbody & constraints #include "BulletDynamics/Dynamics/btRigidBody.h" #include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h" #include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h" #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" //for debug rendering #include "BulletCollision/CollisionShapes/btCompoundShape.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" #include "BulletCollision/CollisionShapes/btBoxShape.h" #include "BulletCollision/CollisionShapes/btCylinderShape.h" #include "BulletCollision/CollisionShapes/btConeShape.h" #include "BulletCollision/CollisionShapes/btTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h" #include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btTriangleCallback.h" #include "LinearMath/btIDebugDraw.h" //vehicle #include "BulletDynamics/Vehicle/btRaycastVehicle.h" #include "BulletDynamics/Vehicle/btVehicleRaycaster.h" #include "BulletDynamics/Vehicle/btWheelInfo.h" #include "LinearMath/btIDebugDraw.h" #include "LinearMath/btQuickprof.h" #include "LinearMath/btMotionState.h" #include btDiscreteDynamicsWorld::btDiscreteDynamicsWorld(btDispatcher* dispatcher,btOverlappingPairCache* pairCache,btConstraintSolver* constraintSolver) :btDynamicsWorld(dispatcher,pairCache), m_constraintSolver(constraintSolver? constraintSolver: new btSequentialImpulseConstraintSolver), m_debugDrawer(0), m_gravity(0,-10,0), m_localTime(1.f/60.f), m_profileTimings(0) { m_islandManager = new btSimulationIslandManager(); m_ownsIslandManager = true; m_ownsConstraintSolver = (constraintSolver==0); } btDiscreteDynamicsWorld::~btDiscreteDynamicsWorld() { //only delete it when we created it if (m_ownsIslandManager) delete m_islandManager; if (m_ownsConstraintSolver) delete m_constraintSolver; } void btDiscreteDynamicsWorld::saveKinematicState(float timeStep) { for (unsigned int i=0;igetActivationState() != ISLAND_SLEEPING) { if (body->isKinematicObject()) { //to calculate velocities next frame body->saveKinematicState(timeStep); } } } } } void btDiscreteDynamicsWorld::synchronizeMotionStates() { //debug vehicle wheels { //todo: iterate over awake simulation islands! for (unsigned int i=0;igetDebugMode() & btIDebugDraw::DBG_DrawWireframe) { btVector3 color(255.f,255.f,255.f); switch(colObj->getActivationState()) { case ACTIVE_TAG: color = btVector3(255.f,255.f,255.f); break; case ISLAND_SLEEPING: color = btVector3(0.f,255.f,0.f);break; case WANTS_DEACTIVATION: color = btVector3(0.f,255.f,255.f);break; case DISABLE_DEACTIVATION: color = btVector3(255.f,0.f,0.f);break; case DISABLE_SIMULATION: color = btVector3(255.f,255.f,0.f);break; default: { color = btVector3(255.f,0.f,0.f); } }; debugDrawObject(colObj->getWorldTransform(),colObj->getCollisionShape(),color); } btRigidBody* body = btRigidBody::upcast(colObj); if (body && body->getMotionState() && !body->isStaticOrKinematicObject()) { if (body->getActivationState() != ISLAND_SLEEPING) { btTransform interpolatedTransform; btTransformUtil::integrateTransform(body->getInterpolationWorldTransform(), body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(),m_localTime,interpolatedTransform); body->getMotionState()->setWorldTransform(interpolatedTransform); } } } } if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawWireframe) { for (unsigned int i=0;im_vehicles.size();i++) { for (int v=0;vgetNumWheels();v++) { btVector3 wheelColor(0,255,255); if (m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_isInContact) { wheelColor.setValue(0,0,255); } else { wheelColor.setValue(255,0,255); } //synchronize the wheels with the (interpolated) chassis worldtransform m_vehicles[i]->updateWheelTransform(v,true); btVector3 wheelPosWS = m_vehicles[i]->getWheelInfo(v).m_worldTransform.getOrigin(); btVector3 axle = btVector3( m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[0][m_vehicles[i]->getRightAxis()], m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[1][m_vehicles[i]->getRightAxis()], m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[2][m_vehicles[i]->getRightAxis()]); //m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_wheelAxleWS //debug wheels (cylinders) m_debugDrawer->drawLine(wheelPosWS,wheelPosWS+axle,wheelColor); m_debugDrawer->drawLine(wheelPosWS,m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_contactPointWS,wheelColor); } } } } int btDiscreteDynamicsWorld::stepSimulation( float timeStep,int maxSubSteps, float fixedTimeStep) { int numSimulationSubSteps = 0; if (maxSubSteps) { //fixed timestep with interpolation m_localTime += timeStep; if (m_localTime >= fixedTimeStep) { numSimulationSubSteps = int( m_localTime / fixedTimeStep); m_localTime -= numSimulationSubSteps * fixedTimeStep; } } else { //variable timestep fixedTimeStep = timeStep; m_localTime = timeStep; if (btFuzzyZero(timeStep)) { numSimulationSubSteps = 0; maxSubSteps = 0; } else { numSimulationSubSteps = 1; maxSubSteps = 1; } } //process some debugging flags if (getDebugDrawer()) { gDisableDeactivation = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_NoDeactivation) != 0; } if (numSimulationSubSteps) { saveKinematicState(fixedTimeStep); //clamp the number of substeps, to prevent simulation grinding spiralling down to a halt int clampedSimulationSteps = (numSimulationSubSteps > maxSubSteps)? maxSubSteps : numSimulationSubSteps; for (int i=0;isetGravity(gravity); } } } void btDiscreteDynamicsWorld::removeRigidBody(btRigidBody* body) { removeCollisionObject(body); } void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body) { if (!body->isStaticOrKinematicObject()) { body->setGravity(m_gravity); } if (body->getCollisionShape()) { bool isDynamic = !(body->isStaticObject() || body->isKinematicObject()); short collisionFilterGroup = isDynamic? btBroadphaseProxy::DefaultFilter : btBroadphaseProxy::StaticFilter; short collisionFilterMask = isDynamic? btBroadphaseProxy::AllFilter : btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter; addCollisionObject(body,collisionFilterGroup,collisionFilterMask); } } void btDiscreteDynamicsWorld::updateVehicles(float timeStep) { BEGIN_PROFILE("updateVehicles"); for (unsigned int i=0;iupdateVehicle( timeStep); } END_PROFILE("updateVehicles"); } void btDiscreteDynamicsWorld::updateActivationState(float timeStep) { BEGIN_PROFILE("updateActivationState"); for (unsigned int i=0;iupdateDeactivation(timeStep); if (body->wantsSleeping()) { if (body->isStaticOrKinematicObject()) { body->setActivationState(ISLAND_SLEEPING); } else { if (body->getActivationState() == ACTIVE_TAG) body->setActivationState( WANTS_DEACTIVATION ); } } else { if (body->getActivationState() != DISABLE_DEACTIVATION) body->setActivationState( ACTIVE_TAG ); } } } END_PROFILE("updateActivationState"); } void btDiscreteDynamicsWorld::addConstraint(btTypedConstraint* constraint) { m_constraints.push_back(constraint); } void btDiscreteDynamicsWorld::removeConstraint(btTypedConstraint* constraint) { std::vector::iterator cit = std::find(m_constraints.begin(),m_constraints.end(),constraint); if (!(cit==m_constraints.end())) { m_constraints.erase(cit); } } void btDiscreteDynamicsWorld::addVehicle(btRaycastVehicle* vehicle) { m_vehicles.push_back(vehicle); } void btDiscreteDynamicsWorld::removeVehicle(btRaycastVehicle* vehicle) { std::vector::iterator vit = std::find(m_vehicles.begin(),m_vehicles.end(),vehicle); if (!(vit==m_vehicles.end())) { m_vehicles.erase(vit); } } void btDiscreteDynamicsWorld::solveContactConstraints(btContactSolverInfo& solverInfo) { BEGIN_PROFILE("solveContactConstraints"); struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback { btContactSolverInfo& m_solverInfo; btConstraintSolver* m_solver; btIDebugDraw* m_debugDrawer; InplaceSolverIslandCallback( btContactSolverInfo& solverInfo, btConstraintSolver* solver, btIDebugDraw* debugDrawer) :m_solverInfo(solverInfo), m_solver(solver), m_debugDrawer(debugDrawer) { } virtual void ProcessIsland(btPersistentManifold** manifolds,int numManifolds) { m_solver->solveGroup( manifolds, numManifolds,m_solverInfo,m_debugDrawer); } }; InplaceSolverIslandCallback solverCallback( solverInfo, m_constraintSolver, m_debugDrawer); /// solve all the contact points and contact friction m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld()->getCollisionObjectArray(),&solverCallback); END_PROFILE("solveContactConstraints"); } void btDiscreteDynamicsWorld::solveNoncontactConstraints(btContactSolverInfo& solverInfo) { BEGIN_PROFILE("solveNoncontactConstraints"); int i; int numConstraints = int(m_constraints.size()); ///constraint preparation: building jacobians for (i=0;i< numConstraints ; i++ ) { btTypedConstraint* constraint = m_constraints[i]; constraint->buildJacobian(); } //solve the regular non-contact constraints (point 2 point, hinge, generic d6) for (int g=0;gsolveConstraint( solverInfo.m_timeStep ); } } END_PROFILE("solveNoncontactConstraints"); } void btDiscreteDynamicsWorld::calculateSimulationIslands() { BEGIN_PROFILE("calculateSimulationIslands"); getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher()); { int i; int numConstraints = int(m_constraints.size()); for (i=0;i< numConstraints ; i++ ) { btTypedConstraint* constraint = m_constraints[i]; const btRigidBody* colObj0 = &constraint->getRigidBodyA(); const btRigidBody* colObj1 = &constraint->getRigidBodyB(); if (((colObj0) && ((colObj0)->mergesSimulationIslands())) && ((colObj1) && ((colObj1)->mergesSimulationIslands()))) { if (colObj0->isActive() || colObj1->isActive()) { getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(), (colObj1)->getIslandTag()); } } } } //Store the island id in each body getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld()); END_PROFILE("calculateSimulationIslands"); } static void DrawAabb(btIDebugDraw* debugDrawer,const btVector3& from,const btVector3& to,const btVector3& color) { btVector3 halfExtents = (to-from)* 0.5f; btVector3 center = (to+from) *0.5f; int i,j; btVector3 edgecoord(1.f,1.f,1.f),pa,pb; for (i=0;i<4;i++) { for (j=0;j<3;j++) { pa = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1], edgecoord[2]*halfExtents[2]); pa+=center; int othercoord = j%3; edgecoord[othercoord]*=-1.f; pb = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1], edgecoord[2]*halfExtents[2]); pb+=center; debugDrawer->drawLine(pa,pb,color); } edgecoord = btVector3(-1.f,-1.f,-1.f); if (i<3) edgecoord[i]*=-1.f; } } void btDiscreteDynamicsWorld::updateAabbs() { BEGIN_PROFILE("updateAabbs"); btVector3 colorvec(1,0,0); btTransform predictedTrans; for (unsigned int i=0;iIsActive() && (!body->IsStatic())) { btPoint3 minAabb,maxAabb; colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb); btSimpleBroadphase* bp = (btSimpleBroadphase*)m_broadphasePairCache; //moving objects should be moderately sized, probably something wrong if not if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < 1e12f)) { bp->setAabb(body->getBroadphaseHandle(),minAabb,maxAabb); } else { //something went wrong, investigate //this assert is unwanted in 3D modelers (danger of loosing work) assert(0); body->setActivationState(DISABLE_SIMULATION); static bool reportMe = true; if (reportMe) { reportMe = false; printf("Overflow in AABB, object removed from simulation \n"); printf("If you can reproduce this, please email bugs@continuousphysics.com\n"); printf("Please include above information, your Platform, version of OS.\n"); printf("Thanks.\n"); } } if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) { DrawAabb(m_debugDrawer,minAabb,maxAabb,colorvec); } } } } END_PROFILE("updateAabbs"); } void btDiscreteDynamicsWorld::integrateTransforms(float timeStep) { BEGIN_PROFILE("integrateTransforms"); btTransform predictedTrans; for (unsigned int i=0;iisActive() && (!body->isStaticOrKinematicObject())) { body->predictIntegratedTransform(timeStep, predictedTrans); body->proceedToTransform( predictedTrans); } } } END_PROFILE("integrateTransforms"); } void btDiscreteDynamicsWorld::predictUnconstraintMotion(float timeStep) { BEGIN_PROFILE("predictUnconstraintMotion"); for (unsigned int i=0;iisStaticOrKinematicObject()) { if (body->isActive()) { body->applyForces( timeStep); body->integrateVelocities( timeStep); body->predictIntegratedTransform(timeStep,body->getInterpolationWorldTransform()); } } } } END_PROFILE("predictUnconstraintMotion"); } void btDiscreteDynamicsWorld::startProfiling(float timeStep) { #ifdef USE_QUICKPROF //toggle btProfiler if ( m_debugDrawer && m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_ProfileTimings) { if (!m_profileTimings) { m_profileTimings = 1; // To disable profiling, simply comment out the following line. static int counter = 0; char filename[128]; sprintf(filename,"quickprof_bullet_timings%i.csv",counter++); btProfiler::init(filename, btProfiler::BLOCK_CYCLE_SECONDS);//BLOCK_TOTAL_MICROSECONDS } else { btProfiler::endProfilingCycle(); } } else { if (m_profileTimings) { btProfiler::endProfilingCycle(); m_profileTimings = 0; btProfiler::destroy(); } } #endif //USE_QUICKPROF } class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback { btIDebugDraw* m_debugDrawer; btVector3 m_color; btTransform m_worldTrans; public: DebugDrawcallback(btIDebugDraw* debugDrawer,const btTransform& worldTrans,const btVector3& color) : m_debugDrawer(debugDrawer), m_worldTrans(worldTrans), m_color(color) { } virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex) { processTriangle(triangle,partId,triangleIndex); } virtual void processTriangle(btVector3* triangle,int partId, int triangleIndex) { btVector3 wv0,wv1,wv2; wv0 = m_worldTrans*triangle[0]; wv1 = m_worldTrans*triangle[1]; wv2 = m_worldTrans*triangle[2]; m_debugDrawer->drawLine(wv0,wv1,m_color); m_debugDrawer->drawLine(wv1,wv2,m_color); m_debugDrawer->drawLine(wv2,wv0,m_color); } }; void btDiscreteDynamicsWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color) { if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) { const btCompoundShape* compoundShape = static_cast(shape); for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* colShape = compoundShape->getChildShape(i); debugDrawObject(worldTransform*childTrans,colShape,color); } } else { switch (shape->getShapeType()) { case SPHERE_SHAPE_PROXYTYPE: { const btSphereShape* sphereShape = static_cast(shape); float radius = sphereShape->getMargin();//radius doesn't include the margin, so draw with margin btVector3 start = worldTransform.getOrigin(); getDebugDrawer()->drawLine(start,start+worldTransform.getBasis() * btVector3(radius,0,0),color); getDebugDrawer()->drawLine(start,start+worldTransform.getBasis() * btVector3(0,radius,0),color); getDebugDrawer()->drawLine(start,start+worldTransform.getBasis() * btVector3(0,0,radius),color); //drawSphere break; } case MULTI_SPHERE_SHAPE_PROXYTYPE: case CONE_SHAPE_PROXYTYPE: { const btConeShape* coneShape = static_cast(shape); float radius = coneShape->getRadius();//+coneShape->getMargin(); float height = coneShape->getHeight();//+coneShape->getMargin(); btVector3 start = worldTransform.getOrigin(); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0.f,0.f,0.5f*height),start+worldTransform.getBasis() * btVector3(radius,0.f,-0.5f*height),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0.f,0.f,0.5f*height),start+worldTransform.getBasis() * btVector3(-radius,0.f,-0.5f*height),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0.f,0.f,0.5f*height),start+worldTransform.getBasis() * btVector3(0.f,radius,-0.5f*height),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * btVector3(0.f,0.f,0.5f*height),start+worldTransform.getBasis() * btVector3(0.f,-radius,-0.5f*height),color); break; } case CYLINDER_SHAPE_PROXYTYPE: { const btCylinderShape* cylinder = static_cast(shape); int upAxis = cylinder->getUpAxis(); float radius = cylinder->getRadius(); float halfHeight = cylinder->getHalfExtents()[upAxis]; btVector3 start = worldTransform.getOrigin(); btVector3 offsetHeight(0,0,0); offsetHeight[upAxis] = halfHeight; btVector3 offsetRadius(0,0,0); offsetRadius[(upAxis+1)%3] = radius; getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight+offsetRadius),start+worldTransform.getBasis() * (-offsetHeight+offsetRadius),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight-offsetRadius),start+worldTransform.getBasis() * (-offsetHeight-offsetRadius),color); break; } default: { if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE) { btTriangleMeshShape* concaveMesh = (btTriangleMeshShape*) shape; //btVector3 aabbMax(1e30f,1e30f,1e30f); //btVector3 aabbMax(100,100,100);//1e30f,1e30f,1e30f); //todo pass camera, for some culling btVector3 aabbMax(1e30f,1e30f,1e30f); btVector3 aabbMin(-1e30f,-1e30f,-1e30f); DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color); concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax); } if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE) { btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*) shape; //todo: pass camera for some culling btVector3 aabbMax(1e30f,1e30f,1e30f); btVector3 aabbMin(-1e30f,-1e30f,-1e30f); //DebugDrawcallback drawCallback; DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color); convexMesh->getStridingMesh()->InternalProcessAllTriangles(&drawCallback,aabbMin,aabbMax); } /// for polyhedral shapes if (shape->isPolyhedral()) { btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*) shape; int i; for (i=0;igetNumEdges();i++) { btPoint3 a,b; polyshape->getEdge(i,a,b); btVector3 wa = worldTransform * a; btVector3 wb = worldTransform * b; getDebugDrawer()->drawLine(wa,wb,color); } } } } } } void btDiscreteDynamicsWorld::setConstraintSolver(btConstraintSolver* solver) { if (m_ownsConstraintSolver) { delete m_constraintSolver; } m_ownsConstraintSolver = false; m_constraintSolver = solver; } int btDiscreteDynamicsWorld::getNumConstraints() const { return int(m_constraints.size()); } btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) { return m_constraints[index]; } const btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) const { return m_constraints[index]; }