/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2013 Erwin Coumans http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef BT_MULTIBODY_CONSTRAINT_H #define BT_MULTIBODY_CONSTRAINT_H #include "LinearMath/btScalar.h" #include "LinearMath/btAlignedObjectArray.h" #include "btMultiBody.h" class btMultiBody; struct btSolverInfo; #include "btMultiBodySolverConstraint.h" struct btMultiBodyJacobianData { btAlignedObjectArray m_jacobians; btAlignedObjectArray m_deltaVelocitiesUnitImpulse; btAlignedObjectArray m_deltaVelocities; btAlignedObjectArray scratch_r; btAlignedObjectArray scratch_v; btAlignedObjectArray scratch_m; btAlignedObjectArray* m_solverBodyPool; int m_fixedBodyId; }; class btMultiBodyConstraint { protected: btMultiBody* m_bodyA; btMultiBody* m_bodyB; int m_linkA; int m_linkB; int m_num_rows; int m_jac_size_A; int m_jac_size_both; int m_pos_offset; bool m_isUnilateral; btScalar m_maxAppliedImpulse; // data block laid out as follows: // cached impulses. (one per row.) // jacobians. (interleaved, row1 body1 then row1 body2 then row2 body 1 etc) // positions. (one per row.) btAlignedObjectArray m_data; void applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof); void fillMultiBodyConstraintMixed(btMultiBodySolverConstraint& solverConstraint, btMultiBodyJacobianData& data, const btVector3& contactNormalOnB, const btVector3& posAworld, const btVector3& posBworld, btScalar position, const btContactSolverInfo& infoGlobal, btScalar& relaxation, bool isFriction, btScalar desiredVelocity=0, btScalar cfmSlip=0); btScalar fillConstraintRowMultiBodyMultiBody(btMultiBodySolverConstraint& constraintRow, btMultiBodyJacobianData& data, btScalar* jacOrgA,btScalar* jacOrgB, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar lowerLimit, btScalar upperLimit); public: btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral); virtual ~btMultiBodyConstraint(); virtual int getIslandIdA() const =0; virtual int getIslandIdB() const =0; virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows, btMultiBodyJacobianData& data, const btContactSolverInfo& infoGlobal)=0; int getNumRows() const { return m_num_rows; } btMultiBody* getMultiBodyA() { return m_bodyA; } btMultiBody* getMultiBodyB() { return m_bodyB; } // current constraint position // constraint is pos >= 0 for unilateral, or pos = 0 for bilateral // NOTE: ignored position for friction rows. btScalar getPosition(int row) const { return m_data[m_pos_offset + row]; } void setPosition(int row, btScalar pos) { m_data[m_pos_offset + row] = pos; } bool isUnilateral() const { return m_isUnilateral; } // jacobian blocks. // each of size 6 + num_links. (jacobian2 is null if no body2.) // format: 3 'omega' coefficients, 3 'v' coefficients, then the 'qdot' coefficients. btScalar* jacobianA(int row) { return &m_data[m_num_rows + row * m_jac_size_both]; } const btScalar* jacobianA(int row) const { return &m_data[m_num_rows + (row * m_jac_size_both)]; } btScalar* jacobianB(int row) { return &m_data[m_num_rows + (row * m_jac_size_both) + m_jac_size_A]; } const btScalar* jacobianB(int row) const { return &m_data[m_num_rows + (row * m_jac_size_both) + m_jac_size_A]; } btScalar getMaxAppliedImpulse() const { return m_maxAppliedImpulse; } void setMaxAppliedImpulse(btScalar maxImp) { m_maxAppliedImpulse = maxImp; } }; #endif //BT_MULTIBODY_CONSTRAINT_H