/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2013 Erwin Coumans http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btMultiBodyDynamicsWorld.h" #include "btMultiBodyConstraintSolver.h" #include "btMultiBody.h" #include "btMultiBodyLinkCollider.h" #include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" #include "LinearMath/btQuickprof.h" #include "btMultiBodyConstraint.h" void btMultiBodyDynamicsWorld::addMultiBody(btMultiBody* body, short group, short mask) { m_multiBodies.push_back(body); } void btMultiBodyDynamicsWorld::removeMultiBody(btMultiBody* body) { m_multiBodies.remove(body); } void btMultiBodyDynamicsWorld::calculateSimulationIslands() { BT_PROFILE("calculateSimulationIslands"); getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher()); { //merge islands based on speculative contact manifolds too for (int i=0;im_predictiveManifolds.size();i++) { btPersistentManifold* manifold = m_predictiveManifolds[i]; const btCollisionObject* colObj0 = manifold->getBody0(); const btCollisionObject* colObj1 = manifold->getBody1(); if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) && ((colObj1) && (!(colObj1)->isStaticOrKinematicObject()))) { getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag()); } } } { int i; int numConstraints = int(m_constraints.size()); for (i=0;i< numConstraints ; i++ ) { btTypedConstraint* constraint = m_constraints[i]; if (constraint->isEnabled()) { const btRigidBody* colObj0 = &constraint->getRigidBodyA(); const btRigidBody* colObj1 = &constraint->getRigidBodyB(); if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) && ((colObj1) && (!(colObj1)->isStaticOrKinematicObject()))) { getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag()); } } } } //merge islands linked by Featherstone link colliders for (int i=0;igetBaseCollider(); for (int b=0;bgetNumLinks();b++) { btMultiBodyLinkCollider* cur = body->getLink(b).m_collider; if (((cur) && (!(cur)->isStaticOrKinematicObject())) && ((prev) && (!(prev)->isStaticOrKinematicObject()))) { int tagPrev = prev->getIslandTag(); int tagCur = cur->getIslandTag(); getSimulationIslandManager()->getUnionFind().unite(tagPrev, tagCur); } if (cur && !cur->isStaticOrKinematicObject()) prev = cur; } } } //merge islands linked by multibody constraints { for (int i=0;im_multiBodyConstraints.size();i++) { btMultiBodyConstraint* c = m_multiBodyConstraints[i]; int tagA = c->getIslandIdA(); int tagB = c->getIslandIdB(); if (tagA>=0 && tagB>=0) getSimulationIslandManager()->getUnionFind().unite(tagA, tagB); } } //Store the island id in each body getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld()); } void btMultiBodyDynamicsWorld::updateActivationState(btScalar timeStep) { BT_PROFILE("btMultiBodyDynamicsWorld::updateActivationState"); for ( int i=0;icheckMotionAndSleepIfRequired(timeStep); if (!body->isAwake()) { btMultiBodyLinkCollider* col = body->getBaseCollider(); if (col && col->getActivationState() == ACTIVE_TAG) { col->setActivationState( WANTS_DEACTIVATION); col->setDeactivationTime(0.f); } for (int b=0;bgetNumLinks();b++) { btMultiBodyLinkCollider* col = body->getLink(b).m_collider; if (col && col->getActivationState() == ACTIVE_TAG) { col->setActivationState( WANTS_DEACTIVATION); col->setDeactivationTime(0.f); } } } else { btMultiBodyLinkCollider* col = body->getBaseCollider(); if (col && col->getActivationState() != DISABLE_DEACTIVATION) col->setActivationState( ACTIVE_TAG ); for (int b=0;bgetNumLinks();b++) { btMultiBodyLinkCollider* col = body->getLink(b).m_collider; if (col && col->getActivationState() != DISABLE_DEACTIVATION) col->setActivationState( ACTIVE_TAG ); } } } } btDiscreteDynamicsWorld::updateActivationState(timeStep); } SIMD_FORCE_INLINE int btGetConstraintIslandId2(const btTypedConstraint* lhs) { int islandId; const btCollisionObject& rcolObj0 = lhs->getRigidBodyA(); const btCollisionObject& rcolObj1 = lhs->getRigidBodyB(); islandId= rcolObj0.getIslandTag()>=0?rcolObj0.getIslandTag():rcolObj1.getIslandTag(); return islandId; } class btSortConstraintOnIslandPredicate2 { public: bool operator() ( const btTypedConstraint* lhs, const btTypedConstraint* rhs ) const { int rIslandId0,lIslandId0; rIslandId0 = btGetConstraintIslandId2(rhs); lIslandId0 = btGetConstraintIslandId2(lhs); return lIslandId0 < rIslandId0; } }; SIMD_FORCE_INLINE int btGetMultiBodyConstraintIslandId(const btMultiBodyConstraint* lhs) { int islandId; int islandTagA = lhs->getIslandIdA(); int islandTagB = lhs->getIslandIdB(); islandId= islandTagA>=0?islandTagA:islandTagB; return islandId; } class btSortMultiBodyConstraintOnIslandPredicate { public: bool operator() ( const btMultiBodyConstraint* lhs, const btMultiBodyConstraint* rhs ) const { int rIslandId0,lIslandId0; rIslandId0 = btGetMultiBodyConstraintIslandId(rhs); lIslandId0 = btGetMultiBodyConstraintIslandId(lhs); return lIslandId0 < rIslandId0; } }; struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback { btContactSolverInfo* m_solverInfo; btMultiBodyConstraintSolver* m_solver; btMultiBodyConstraint** m_multiBodySortedConstraints; int m_numMultiBodyConstraints; btTypedConstraint** m_sortedConstraints; int m_numConstraints; btIDebugDraw* m_debugDrawer; btDispatcher* m_dispatcher; btAlignedObjectArray m_bodies; btAlignedObjectArray m_manifolds; btAlignedObjectArray m_constraints; btAlignedObjectArray m_multiBodyConstraints; MultiBodyInplaceSolverIslandCallback( btMultiBodyConstraintSolver* solver, btDispatcher* dispatcher) :m_solverInfo(NULL), m_solver(solver), m_multiBodySortedConstraints(NULL), m_numConstraints(0), m_debugDrawer(NULL), m_dispatcher(dispatcher) { } MultiBodyInplaceSolverIslandCallback& operator=(MultiBodyInplaceSolverIslandCallback& other) { btAssert(0); (void)other; return *this; } SIMD_FORCE_INLINE void setup ( btContactSolverInfo* solverInfo, btTypedConstraint** sortedConstraints, int numConstraints, btMultiBodyConstraint** sortedMultiBodyConstraints, int numMultiBodyConstraints, btIDebugDraw* debugDrawer) { btAssert(solverInfo); m_solverInfo = solverInfo; m_multiBodySortedConstraints = sortedMultiBodyConstraints; m_numMultiBodyConstraints = numMultiBodyConstraints; m_sortedConstraints = sortedConstraints; m_numConstraints = numConstraints; m_debugDrawer = debugDrawer; m_bodies.resize (0); m_manifolds.resize (0); m_constraints.resize (0); m_multiBodyConstraints.resize(0); } virtual void processIsland(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifolds,int numManifolds, int islandId) { if (islandId<0) { ///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id m_solver->solveMultiBodyGroup( bodies,numBodies,manifolds, numManifolds,m_sortedConstraints, m_numConstraints, &m_multiBodySortedConstraints[0],m_numConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher); } else { //also add all non-contact constraints/joints for this island btTypedConstraint** startConstraint = 0; btMultiBodyConstraint** startMultiBodyConstraint = 0; int numCurConstraints = 0; int numCurMultiBodyConstraints = 0; int i; //find the first constraint for this island for (i=0;im_minimumSolverBatchSize<=1) { m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher); } else { for (i=0;im_solverInfo->m_minimumSolverBatchSize) { processConstraints(); } else { //printf("deferred\n"); } } } } void processConstraints() { btCollisionObject** bodies = m_bodies.size()? &m_bodies[0]:0; btPersistentManifold** manifold = m_manifolds.size()?&m_manifolds[0]:0; btTypedConstraint** constraints = m_constraints.size()?&m_constraints[0]:0; btMultiBodyConstraint** multiBodyConstraints = m_multiBodyConstraints.size() ? &m_multiBodyConstraints[0] : 0; m_solver->solveMultiBodyGroup( bodies,m_bodies.size(),manifold, m_manifolds.size(),constraints, m_constraints.size() ,multiBodyConstraints, m_multiBodyConstraints.size(), *m_solverInfo,m_debugDrawer,m_dispatcher); m_bodies.resize(0); m_manifolds.resize(0); m_constraints.resize(0); m_multiBodyConstraints.resize(0); } }; btMultiBodyDynamicsWorld::btMultiBodyDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btMultiBodyConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration) :btDiscreteDynamicsWorld(dispatcher,pairCache,constraintSolver,collisionConfiguration), m_multiBodyConstraintSolver(constraintSolver) { //split impulse is not yet supported for Featherstone hierarchies getSolverInfo().m_splitImpulse = false; getSolverInfo().m_solverMode |=SOLVER_USE_2_FRICTION_DIRECTIONS; m_solverMultiBodyIslandCallback = new MultiBodyInplaceSolverIslandCallback(constraintSolver,dispatcher); } btMultiBodyDynamicsWorld::~btMultiBodyDynamicsWorld () { delete m_solverMultiBodyIslandCallback; } void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo) { btAlignedObjectArray scratch_r; btAlignedObjectArray scratch_v; btAlignedObjectArray scratch_m; BT_PROFILE("solveConstraints"); m_sortedConstraints.resize( m_constraints.size()); int i; for (i=0;isetup(&solverInfo,constraintsPtr,m_sortedConstraints.size(),sortedMultiBodyConstraints,m_sortedMultiBodyConstraints.size(), getDebugDrawer()); m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds()); /// solve all the constraints for this island m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld(),m_solverMultiBodyIslandCallback); { BT_PROFILE("btMultiBody addForce and stepVelocities"); for (int i=0;im_multiBodies.size();i++) { btMultiBody* bod = m_multiBodies[i]; bool isSleeping = false; if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING) { isSleeping = true; } for (int b=0;bgetNumLinks();b++) { if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING) isSleeping = true; } if (!isSleeping) { scratch_r.resize(bod->getNumLinks()+1); scratch_v.resize(bod->getNumLinks()+1); scratch_m.resize(bod->getNumLinks()+1); bod->clearForcesAndTorques(); bod->addBaseForce(m_gravity * bod->getBaseMass()); for (int j = 0; j < bod->getNumLinks(); ++j) { bod->addLinkForce(j, m_gravity * bod->getLinkMass(j)); } bod->stepVelocities(solverInfo.m_timeStep, scratch_r, scratch_v, scratch_m); } } } m_solverMultiBodyIslandCallback->processConstraints(); m_constraintSolver->allSolved(solverInfo, m_debugDrawer); } void btMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep) { btDiscreteDynamicsWorld::integrateTransforms(timeStep); { BT_PROFILE("btMultiBody stepPositions"); //integrate and update the Featherstone hierarchies btAlignedObjectArray world_to_local; btAlignedObjectArray local_origin; for (int b=0;bgetBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING) { isSleeping = true; } for (int b=0;bgetNumLinks();b++) { if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING) isSleeping = true; } if (!isSleeping) { int nLinks = bod->getNumLinks(); ///base + num links world_to_local.resize(nLinks+1); local_origin.resize(nLinks+1); bod->stepPositions(timeStep); world_to_local[0] = bod->getWorldToBaseRot(); local_origin[0] = bod->getBasePos(); if (bod->getBaseCollider()) { btVector3 posr = local_origin[0]; float pos[4]={posr.x(),posr.y(),posr.z(),1}; float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()}; btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); bod->getBaseCollider()->setWorldTransform(tr); } for (int k=0;kgetNumLinks();k++) { const int parent = bod->getParent(k); world_to_local[k+1] = bod->getParentToLocalRot(k) * world_to_local[parent+1]; local_origin[k+1] = local_origin[parent+1] + (quatRotate(world_to_local[k+1].inverse() , bod->getRVector(k))); } for (int m=0;mgetNumLinks();m++) { btMultiBodyLinkCollider* col = bod->getLink(m).m_collider; if (col) { int link = col->m_link; btAssert(link == m); int index = link+1; btVector3 posr = local_origin[index]; float pos[4]={posr.x(),posr.y(),posr.z(),1}; float quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()}; btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); } } } else { bod->clearVelocities(); } } } } void btMultiBodyDynamicsWorld::addMultiBodyConstraint( btMultiBodyConstraint* constraint) { m_multiBodyConstraints.push_back(constraint); } void btMultiBodyDynamicsWorld::removeMultiBodyConstraint( btMultiBodyConstraint* constraint) { m_multiBodyConstraints.remove(constraint); }