/* * Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/ * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies. * Erwin Coumans makes no representations about the suitability * of this software for any purpose. * It is provided "as is" without express or implied warranty. */ #include "LinearMath/btVector3.h" #include "btRaycastVehicle.h" #include "BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h" #include "BulletDynamics/ConstraintSolver/btJacobianEntry.h" #include "LinearMath/btQuaternion.h" #include "BulletDynamics/Dynamics/btDynamicsWorld.h" #include "btVehicleRaycaster.h" #include "btWheelInfo.h" #include "BulletDynamics/ConstraintSolver/btContactConstraint.h" static btRigidBody s_fixedObject( 0,0,0); btRaycastVehicle::btRaycastVehicle(const btVehicleTuning& tuning,btRigidBody* chassis, btVehicleRaycaster* raycaster ) :m_vehicleRaycaster(raycaster), m_pitchControl(0.f) { m_chassisBody = chassis; m_indexRightAxis = 0; m_indexUpAxis = 2; m_indexForwardAxis = 1; defaultInit(tuning); } void btRaycastVehicle::defaultInit(const btVehicleTuning& tuning) { m_currentVehicleSpeedKmHour = 0.f; m_steeringValue = 0.f; } btRaycastVehicle::~btRaycastVehicle() { } // // basically most of the code is general for 2 or 4 wheel vehicles, but some of it needs to be reviewed // btWheelInfo& btRaycastVehicle::addWheel( const btVector3& connectionPointCS, const btVector3& wheelDirectionCS0,const btVector3& wheelAxleCS, btScalar suspensionRestLength, btScalar wheelRadius,const btVehicleTuning& tuning, bool isFrontWheel) { btWheelInfoConstructionInfo ci; ci.m_chassisConnectionCS = connectionPointCS; ci.m_wheelDirectionCS = wheelDirectionCS0; ci.m_wheelAxleCS = wheelAxleCS; ci.m_suspensionRestLength = suspensionRestLength; ci.m_wheelRadius = wheelRadius; ci.m_suspensionStiffness = tuning.m_suspensionStiffness; ci.m_wheelsDampingCompression = tuning.m_suspensionCompression; ci.m_wheelsDampingRelaxation = tuning.m_suspensionDamping; ci.m_frictionSlip = tuning.m_frictionSlip; ci.m_bIsFrontWheel = isFrontWheel; ci.m_maxSuspensionTravelCm = tuning.m_maxSuspensionTravelCm; m_wheelInfo.push_back( btWheelInfo(ci)); btWheelInfo& wheel = m_wheelInfo[getNumWheels()-1]; updateWheelTransformsWS( wheel , false ); updateWheelTransform(getNumWheels()-1,false); return wheel; } const btTransform& btRaycastVehicle::getWheelTransformWS( int wheelIndex ) const { assert(wheelIndex < getNumWheels()); const btWheelInfo& wheel = m_wheelInfo[wheelIndex]; return wheel.m_worldTransform; } void btRaycastVehicle::updateWheelTransform( int wheelIndex , bool interpolatedTransform) { btWheelInfo& wheel = m_wheelInfo[ wheelIndex ]; updateWheelTransformsWS(wheel,interpolatedTransform); btVector3 up = -wheel.m_raycastInfo.m_wheelDirectionWS; const btVector3& right = wheel.m_raycastInfo.m_wheelAxleWS; btVector3 fwd = up.cross(right); fwd = fwd.normalize(); // up = right.cross(fwd); // up.normalize(); //rotate around steering over de wheelAxleWS float steering = wheel.m_steering; btQuaternion steeringOrn(up,steering);//wheel.m_steering); btMatrix3x3 steeringMat(steeringOrn); btQuaternion rotatingOrn(right,wheel.m_rotation); btMatrix3x3 rotatingMat(rotatingOrn); btMatrix3x3 basis2( right[0],fwd[0],up[0], right[1],fwd[1],up[1], right[2],fwd[2],up[2] ); wheel.m_worldTransform.setBasis(steeringMat * rotatingMat * basis2); wheel.m_worldTransform.setOrigin( wheel.m_raycastInfo.m_hardPointWS + wheel.m_raycastInfo.m_wheelDirectionWS * wheel.m_raycastInfo.m_suspensionLength ); } void btRaycastVehicle::resetSuspension() { int i; for (i=0;igetMotionState())) { getRigidBody()->getMotionState()->getWorldTransform(chassisTrans); } wheel.m_raycastInfo.m_hardPointWS = chassisTrans( wheel.m_chassisConnectionPointCS ); wheel.m_raycastInfo.m_wheelDirectionWS = chassisTrans.getBasis() * wheel.m_wheelDirectionCS ; wheel.m_raycastInfo.m_wheelAxleWS = chassisTrans.getBasis() * wheel.m_wheelAxleCS; } btScalar btRaycastVehicle::rayCast(btWheelInfo& wheel) { updateWheelTransformsWS( wheel,false); btScalar depth = -1; btScalar raylen = wheel.getSuspensionRestLength()+wheel.m_wheelsRadius; btVector3 rayvector = wheel.m_raycastInfo.m_wheelDirectionWS * (raylen); const btVector3& source = wheel.m_raycastInfo.m_hardPointWS; wheel.m_raycastInfo.m_contactPointWS = source + rayvector; const btVector3& target = wheel.m_raycastInfo.m_contactPointWS; btScalar param = 0.f; btVehicleRaycaster::btVehicleRaycasterResult rayResults; assert(m_vehicleRaycaster); void* object = m_vehicleRaycaster->castRay(source,target,rayResults); wheel.m_raycastInfo.m_groundObject = 0; if (object) { param = rayResults.m_distFraction; depth = raylen * rayResults.m_distFraction; wheel.m_raycastInfo.m_contactNormalWS = rayResults.m_hitNormalInWorld; wheel.m_raycastInfo.m_isInContact = true; wheel.m_raycastInfo.m_groundObject = &s_fixedObject;//todo for driving on dynamic/movable objects!; //wheel.m_raycastInfo.m_groundObject = object; btScalar hitDistance = param*raylen; wheel.m_raycastInfo.m_suspensionLength = hitDistance - wheel.m_wheelsRadius; //clamp on max suspension travel float minSuspensionLength = wheel.getSuspensionRestLength() - wheel.m_maxSuspensionTravelCm*0.01f; float maxSuspensionLength = wheel.getSuspensionRestLength()+ wheel.m_maxSuspensionTravelCm*0.01f; if (wheel.m_raycastInfo.m_suspensionLength < minSuspensionLength) { wheel.m_raycastInfo.m_suspensionLength = minSuspensionLength; } if (wheel.m_raycastInfo.m_suspensionLength > maxSuspensionLength) { wheel.m_raycastInfo.m_suspensionLength = maxSuspensionLength; } wheel.m_raycastInfo.m_contactPointWS = rayResults.m_hitPointInWorld; btScalar denominator= wheel.m_raycastInfo.m_contactNormalWS.dot( wheel.m_raycastInfo.m_wheelDirectionWS ); btVector3 chassis_velocity_at_contactPoint; btVector3 relpos = wheel.m_raycastInfo.m_contactPointWS-getRigidBody()->getCenterOfMassPosition(); chassis_velocity_at_contactPoint = getRigidBody()->getVelocityInLocalPoint(relpos); btScalar projVel = wheel.m_raycastInfo.m_contactNormalWS.dot( chassis_velocity_at_contactPoint ); if ( denominator >= -0.1f) { wheel.m_suspensionRelativeVelocity = 0.0f; wheel.m_clippedInvContactDotSuspension = 1.0f / 0.1f; } else { btScalar inv = -1.f / denominator; wheel.m_suspensionRelativeVelocity = projVel * inv; wheel.m_clippedInvContactDotSuspension = inv; } } else { //put wheel info as in rest position wheel.m_raycastInfo.m_suspensionLength = wheel.getSuspensionRestLength(); wheel.m_suspensionRelativeVelocity = 0.0f; wheel.m_raycastInfo.m_contactNormalWS = - wheel.m_raycastInfo.m_wheelDirectionWS; wheel.m_clippedInvContactDotSuspension = 1.0f; } return depth; } const btTransform& btRaycastVehicle::getChassisWorldTransform() const { /*if (getRigidBody()->getMotionState()) { btTransform chassisWorldTrans; getRigidBody()->getMotionState()->getWorldTransform(chassisWorldTrans); return chassisWorldTrans; } */ return getRigidBody()->getCenterOfMassTransform(); } void btRaycastVehicle::updateVehicle( btScalar step ) { { for (int i=0;igetLinearVelocity().length(); const btTransform& chassisTrans = getChassisWorldTransform(); btVector3 forwardW ( chassisTrans.getBasis()[0][m_indexForwardAxis], chassisTrans.getBasis()[1][m_indexForwardAxis], chassisTrans.getBasis()[2][m_indexForwardAxis]); if (forwardW.dot(getRigidBody()->getLinearVelocity()) < 0.f) { m_currentVehicleSpeedKmHour *= -1.f; } // // simulate suspension // int i=0; for (i=0;i gMaxSuspensionForce) { suspensionForce = gMaxSuspensionForce; } btVector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step; btVector3 relpos = wheel.m_raycastInfo.m_contactPointWS - getRigidBody()->getCenterOfMassPosition(); getRigidBody()->applyImpulse(impulse, relpos); } updateFriction( step); for (i=0;igetCenterOfMassPosition(); btVector3 vel = getRigidBody()->getVelocityInLocalPoint( relpos ); if (wheel.m_raycastInfo.m_isInContact) { const btTransform& chassisWorldTransform = getChassisWorldTransform(); btVector3 fwd ( chassisWorldTransform.getBasis()[0][m_indexForwardAxis], chassisWorldTransform.getBasis()[1][m_indexForwardAxis], chassisWorldTransform.getBasis()[2][m_indexForwardAxis]); btScalar proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS); fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj; btScalar proj2 = fwd.dot(vel); wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelsRadius); wheel.m_rotation += wheel.m_deltaRotation; } else { wheel.m_rotation += wheel.m_deltaRotation; } wheel.m_deltaRotation *= 0.99f;//damping of rotation when not in contact } } void btRaycastVehicle::setSteeringValue(btScalar steering,int wheel) { assert(wheel>=0 && wheel < getNumWheels()); btWheelInfo& wheelInfo = getWheelInfo(wheel); wheelInfo.m_steering = steering; } btScalar btRaycastVehicle::getSteeringValue(int wheel) const { return getWheelInfo(wheel).m_steering; } void btRaycastVehicle::applyEngineForce(btScalar force, int wheel) { assert(wheel>=0 && wheel < getNumWheels()); btWheelInfo& wheelInfo = getWheelInfo(wheel); wheelInfo.m_engineForce = force; } const btWheelInfo& btRaycastVehicle::getWheelInfo(int index) const { btAssert((index >= 0) && (index < getNumWheels())); return m_wheelInfo[index]; } btWheelInfo& btRaycastVehicle::getWheelInfo(int index) { btAssert((index >= 0) && (index < getNumWheels())); return m_wheelInfo[index]; } void btRaycastVehicle::setBrake(float brake,int wheelIndex) { btAssert((wheelIndex >= 0) && (wheelIndex < getNumWheels())); getWheelInfo(wheelIndex).m_brake; } void btRaycastVehicle::updateSuspension(btScalar deltaTime) { btScalar chassisMass = 1.f / m_chassisBody->getInvMass(); for (int w_it=0; w_it maximpSquared) { sliding = true; btScalar factor = maximp / btSqrt(impulseSquared); m_wheelInfo[wheel].m_skidInfo *= factor; } } } } if (sliding) { for (int wheel = 0;wheel < getNumWheels(); wheel++) { if (sideImpulse[wheel] != 0.f) { if (m_wheelInfo[wheel].m_skidInfo< 1.f) { forwardImpulse[wheel] *= m_wheelInfo[wheel].m_skidInfo; sideImpulse[wheel] *= m_wheelInfo[wheel].m_skidInfo; } } } } // apply the impulses { for (int wheel = 0;wheelgetCenterOfMassPosition(); if (forwardImpulse[wheel] != 0.f) { m_chassisBody->applyImpulse(forwardWS[wheel]*(forwardImpulse[wheel]),rel_pos); } if (sideImpulse[wheel] != 0.f) { class btRigidBody* groundObject = (class btRigidBody*) m_wheelInfo[wheel].m_raycastInfo.m_groundObject; btVector3 rel_pos2 = wheelInfo.m_raycastInfo.m_contactPointWS - groundObject->getCenterOfMassPosition(); btVector3 sideImp = axle[wheel] * sideImpulse[wheel]; rel_pos[2] *= wheelInfo.m_rollInfluence; m_chassisBody->applyImpulse(sideImp,rel_pos); //apply friction impulse on the ground groundObject->applyImpulse(-sideImp,rel_pos2); } } } delete []forwardWS; delete [] axle; delete[]forwardImpulse; delete[] sideImpulse; } void* btDefaultVehicleRaycaster::castRay(const btVector3& from,const btVector3& to, btVehicleRaycasterResult& result) { // RayResultCallback& resultCallback; btCollisionWorld::ClosestRayResultCallback rayCallback(from,to); m_dynamicsWorld->rayTest(from, to, rayCallback); if (rayCallback.HasHit()) { btRigidBody* body = btRigidBody::upcast(rayCallback.m_collisionObject); if (body) { result.m_hitPointInWorld = rayCallback.m_hitPointWorld; result.m_hitNormalInWorld = rayCallback.m_hitNormalWorld; result.m_hitNormalInWorld.normalize(); result.m_distFraction = rayCallback.m_closestHitFraction; return body; } } return 0; }