// Begin License: // Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com). // All rights reserved. // // This file is part of the Carve CSG Library (http://carve-csg.com/) // // This file may be used under the terms of the GNU General Public // License version 2.0 as published by the Free Software Foundation // and appearing in the file LICENSE.GPL2 included in the packaging of // this file. // // This file is provided "AS IS" with NO WARRANTY OF ANY KIND, // INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE. // End: #if defined(HAVE_CONFIG_H) # include #endif #if defined(CARVE_DEBUG) #define DEBUG_CONTAINS_VERTEX #endif #include #include #include #include #include #include #include #include BOOST_INCLUDE(random.hpp) namespace { bool emb_test(carve::poly::Polyhedron *poly, std::map > &embedding, carve::geom3d::Vector v, int m_id) { std::map result; #if defined(CARVE_DEBUG) std::cerr << "test " << v << " (m_id:" << m_id << ")" << std::endl; #endif poly->testVertexAgainstClosedManifolds(v, result, true); std::set inside; for (std::map::iterator j = result.begin(); j != result.end(); ++j) { if ((*j).first == m_id) continue; if ((*j).second == carve::POINT_IN) inside.insert((*j).first); else if ((*j).second == carve::POINT_ON) { #if defined(CARVE_DEBUG) std::cerr << " FAIL" << std::endl; #endif return false; } } #if defined(CARVE_DEBUG) std::cerr << " OK (inside.size()==" << inside.size() << ")" << std::endl; #endif embedding[m_id] = inside; return true; } struct order_faces { bool operator()(const carve::poly::Polyhedron::face_t * const &a, const carve::poly::Polyhedron::face_t * const &b) const { return std::lexicographical_compare(a->vbegin(), a->vend(), b->vbegin(), b->vend()); } }; } namespace carve { namespace poly { bool Polyhedron::initSpatialIndex() { static carve::TimingName FUNC_NAME("Polyhedron::initSpatialIndex()"); carve::TimingBlock block(FUNC_NAME); octree.setBounds(aabb); octree.addFaces(faces); octree.addEdges(edges); octree.splitTree(); return true; } void Polyhedron::invertAll() { for (size_t i = 0; i < faces.size(); ++i) { faces[i].invert(); } for (size_t i = 0; i < edges.size(); ++i) { std::vector &f = connectivity.edge_to_face[i]; for (size_t j = 0; j < (f.size() & ~1U); j += 2) { std::swap(f[j], f[j+1]); } } for (size_t i = 0; i < manifold_is_negative.size(); ++i) { manifold_is_negative[i] = !manifold_is_negative[i]; } } void Polyhedron::invert(const std::vector &selected_manifolds) { bool altered = false; for (size_t i = 0; i < faces.size(); ++i) { if (faces[i].manifold_id >= 0 && (unsigned)faces[i].manifold_id < selected_manifolds.size() && selected_manifolds[faces[i].manifold_id]) { altered = true; faces[i].invert(); } } if (altered) { for (size_t i = 0; i < edges.size(); ++i) { std::vector &f = connectivity.edge_to_face[i]; for (size_t j = 0; j < (f.size() & ~1U); j += 2) { int m_id = -1; if (f[j]) m_id = f[j]->manifold_id; if (f[j+1]) m_id = f[j+1]->manifold_id; if (m_id >= 0 && (unsigned)m_id < selected_manifolds.size() && selected_manifolds[m_id]) { std::swap(f[j], f[j+1]); } } } for (size_t i = 0; i < std::min(selected_manifolds.size(), manifold_is_negative.size()); ++i) { manifold_is_negative[i] = !manifold_is_negative[i]; } } } void Polyhedron::initVertexConnectivity() { static carve::TimingName FUNC_NAME("static Polyhedron initVertexConnectivity()"); carve::TimingBlock block(FUNC_NAME); // allocate space for connectivity info. connectivity.vertex_to_edge.resize(vertices.size()); connectivity.vertex_to_face.resize(vertices.size()); std::vector vertex_face_count; vertex_face_count.resize(vertices.size()); // work out how many faces/edges each vertex is connected to, in // order to save on array reallocs. for (unsigned i = 0; i < faces.size(); ++i) { face_t &f = faces[i]; for (unsigned j = 0; j < f.nVertices(); j++) { vertex_face_count[vertexToIndex_fast(f.vertex(j))]++; } } for (size_t i = 0; i < vertices.size(); ++i) { connectivity.vertex_to_edge[i].reserve(vertex_face_count[i]); connectivity.vertex_to_face[i].reserve(vertex_face_count[i]); } // record connectivity from vertex to edges. for (size_t i = 0; i < edges.size(); ++i) { size_t v1i = vertexToIndex_fast(edges[i].v1); size_t v2i = vertexToIndex_fast(edges[i].v2); connectivity.vertex_to_edge[v1i].push_back(&edges[i]); connectivity.vertex_to_edge[v2i].push_back(&edges[i]); } // record connectivity from vertex to faces. for (size_t i = 0; i < faces.size(); ++i) { face_t &f = faces[i]; for (unsigned j = 0; j < f.nVertices(); j++) { size_t vi = vertexToIndex_fast(f.vertex(j)); connectivity.vertex_to_face[vi].push_back(&f); } } } bool Polyhedron::initConnectivity() { static carve::TimingName FUNC_NAME("Polyhedron::initConnectivity()"); carve::TimingBlock block(FUNC_NAME); // temporary measure: initialize connectivity by creating a // half-edge mesh, and then converting back. std::vector > vertex_storage; vertex_storage.reserve(vertices.size()); for (size_t i = 0; i < vertices.size(); ++i) { vertex_storage.push_back(mesh::Vertex<3>(vertices[i].v)); } std::vector *> mesh_faces; std::unordered_map *, size_t> face_map; { std::vector *> vert_ptrs; for (size_t i = 0; i < faces.size(); ++i) { const face_t &src = faces[i]; vert_ptrs.clear(); vert_ptrs.reserve(src.nVertices()); for (size_t j = 0; j < src.nVertices(); ++j) { size_t vi = vertexToIndex_fast(src.vertex(j)); vert_ptrs.push_back(&vertex_storage[vi]); } mesh::Face<3> *face = new mesh::Face<3>(vert_ptrs.begin(), vert_ptrs.end()); mesh_faces.push_back(face); face_map[face] = i; } } std::vector *> meshes; mesh::Mesh<3>::create(mesh_faces.begin(), mesh_faces.end(), meshes); mesh::MeshSet<3> *meshset = new mesh::MeshSet<3>(vertex_storage, meshes); manifold_is_closed.resize(meshset->meshes.size()); manifold_is_negative.resize(meshset->meshes.size()); std::unordered_map, std::list *> > edge_map; if (meshset->vertex_storage.size()) { mesh::Vertex<3> *Vbase = &meshset->vertex_storage[0]; for (size_t m = 0; m < meshset->meshes.size(); ++m) { mesh::Mesh<3> *mesh = meshset->meshes[m]; manifold_is_closed[m] = mesh->isClosed(); for (size_t f = 0; f < mesh->faces.size(); ++f) { mesh::Face<3> *src = mesh->faces[f]; mesh::Edge<3> *e = src->edge; faces[face_map[src]].manifold_id = m; do { edge_map[std::make_pair(e->v1() - Vbase, e->v2() - Vbase)].push_back(e); e = e->next; } while (e != src->edge); } } } size_t n_edges = 0; for (std::unordered_map, std::list *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) { if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) { n_edges++; } } edges.clear(); edges.reserve(n_edges); for (std::unordered_map, std::list *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) { if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) { edges.push_back(edge_t(&vertices[(*i).first.first], &vertices[(*i).first.second], this)); } } initVertexConnectivity(); for (size_t f = 0; f < faces.size(); ++f) { face_t &face = faces[f]; size_t N = face.nVertices(); for (size_t v = 0; v < N; ++v) { size_t v1i = vertexToIndex_fast(face.vertex(v)); size_t v2i = vertexToIndex_fast(face.vertex((v+1)%N)); std::vector found_edge; CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end())); CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end())); std::set_intersection(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end(), connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end(), std::back_inserter(found_edge)); CARVE_ASSERT(found_edge.size() == 1); face.edge(v) = found_edge[0]; } } connectivity.edge_to_face.resize(edges.size()); for (size_t i = 0; i < edges.size(); ++i) { size_t v1i = vertexToIndex_fast(edges[i].v1); size_t v2i = vertexToIndex_fast(edges[i].v2); std::list *> &efwd = edge_map[std::make_pair(v1i, v2i)]; std::list *> &erev = edge_map[std::make_pair(v1i, v2i)]; for (std::list *>::iterator j = efwd.begin(); j != efwd.end(); ++j) { mesh::Edge<3> *edge = *j; if (face_map.find(edge->face) != face_map.end()) { connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]); if (edge->rev == NULL) { connectivity.edge_to_face[i].push_back(NULL); } else { connectivity.edge_to_face[i].push_back(&faces[face_map[edge->rev->face]]); } } } for (std::list *>::iterator j = erev.begin(); j != erev.end(); ++j) { mesh::Edge<3> *edge = *j; if (face_map.find(edge->face) != face_map.end()) { if (edge->rev == NULL) { connectivity.edge_to_face[i].push_back(NULL); connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]); } } } } delete meshset; return true; } bool Polyhedron::calcManifoldEmbedding() { // this could be significantly sped up using bounding box tests // to work out what pairs of manifolds are embedding candidates. // A per-manifold AABB could also be used to speed up // testVertexAgainstClosedManifolds(). static carve::TimingName FUNC_NAME("Polyhedron::calcManifoldEmbedding()"); static carve::TimingName CME_V("Polyhedron::calcManifoldEmbedding() (vertices)"); static carve::TimingName CME_E("Polyhedron::calcManifoldEmbedding() (edges)"); static carve::TimingName CME_F("Polyhedron::calcManifoldEmbedding() (faces)"); carve::TimingBlock block(FUNC_NAME); const unsigned MCOUNT = manifoldCount(); if (MCOUNT < 2) return true; std::set vertex_manifolds; std::map > embedding; carve::Timing::start(CME_V); for (size_t i = 0; i < vertices.size(); ++i) { vertex_manifolds.clear(); if (vertexManifolds(&vertices[i], set_inserter(vertex_manifolds)) != 1) continue; int m_id = *vertex_manifolds.begin(); if (embedding.find(m_id) == embedding.end()) { if (emb_test(this, embedding, vertices[i].v, m_id) && embedding.size() == MCOUNT) { carve::Timing::stop(); goto done; } } } carve::Timing::stop(); carve::Timing::start(CME_E); for (size_t i = 0; i < edges.size(); ++i) { if (connectivity.edge_to_face[i].size() == 2) { int m_id; const face_t *f1 = connectivity.edge_to_face[i][0]; const face_t *f2 = connectivity.edge_to_face[i][1]; if (f1) m_id = f1->manifold_id; if (f2) m_id = f2->manifold_id; if (embedding.find(m_id) == embedding.end()) { if (emb_test(this, embedding, (edges[i].v1->v + edges[i].v2->v) / 2, m_id) && embedding.size() == MCOUNT) { carve::Timing::stop(); goto done; } } } } carve::Timing::stop(); carve::Timing::start(CME_F); for (size_t i = 0; i < faces.size(); ++i) { int m_id = faces[i].manifold_id; if (embedding.find(m_id) == embedding.end()) { carve::geom2d::P2 pv; if (!carve::geom2d::pickContainedPoint(faces[i].projectedVertices(), pv)) continue; carve::geom3d::Vector v = carve::poly::face::unproject(faces[i], pv); if (emb_test(this, embedding, v, m_id) && embedding.size() == MCOUNT) { carve::Timing::stop(); goto done; } } } carve::Timing::stop(); CARVE_FAIL("could not find test points"); // std::cerr << "could not find test points!!!" << std::endl; // return true; done:; for (std::map >::iterator i = embedding.begin(); i != embedding.end(); ++i) { #if defined(CARVE_DEBUG) std::cerr << (*i).first << " : "; std::copy((*i).second.begin(), (*i).second.end(), std::ostream_iterator(std::cerr, ",")); std::cerr << std::endl; #endif (*i).second.insert(-1); } std::set parents, new_parents; parents.insert(-1); while (embedding.size()) { new_parents.clear(); for (std::map >::iterator i = embedding.begin(); i != embedding.end(); ++i) { if ((*i).second.size() == 1) { if (parents.find(*(*i).second.begin()) != parents.end()) { new_parents.insert((*i).first); #if defined(CARVE_DEBUG) std::cerr << "parent(" << (*i).first << "): " << *(*i).second.begin() << std::endl; #endif } else { #if defined(CARVE_DEBUG) std::cerr << "no parent: " << (*i).first << " (looking for: " << *(*i).second.begin() << ")" << std::endl; #endif } } } for (std::set::const_iterator i = new_parents.begin(); i != new_parents.end(); ++i) { embedding.erase(*i); } for (std::map >::iterator i = embedding.begin(); i != embedding.end(); ++i) { size_t n = 0; for (std::set::const_iterator j = parents.begin(); j != parents.end(); ++j) { n += (*i).second.erase((*j)); } CARVE_ASSERT(n != 0); } parents.swap(new_parents); } return true; } bool Polyhedron::init() { static carve::TimingName FUNC_NAME("Polyhedron::init()"); carve::TimingBlock block(FUNC_NAME); aabb.fit(vertices.begin(), vertices.end(), vec_adapt_vertex_ref()); connectivity.vertex_to_edge.clear(); connectivity.vertex_to_face.clear(); connectivity.edge_to_face.clear(); if (!initConnectivity()) return false; if (!initSpatialIndex()) return false; return true; } void Polyhedron::faceRecalc() { for (size_t i = 0; i < faces.size(); ++i) { if (!faces[i].recalc()) { std::ostringstream out; out << "face " << i << " recalc failed"; throw carve::exception(out.str()); } } } Polyhedron::Polyhedron(const Polyhedron &poly) { faces.reserve(poly.faces.size()); for (size_t i = 0; i < poly.faces.size(); ++i) { const face_t &src = poly.faces[i]; faces.push_back(src); } commonFaceInit(false); // calls setFaceAndVertexOwner() and init() } Polyhedron::Polyhedron(const Polyhedron &poly, const std::vector &selected_manifolds) { size_t n_faces = 0; for (size_t i = 0; i < poly.faces.size(); ++i) { const face_t &src = poly.faces[i]; if (src.manifold_id >= 0 && (unsigned)src.manifold_id < selected_manifolds.size() && selected_manifolds[src.manifold_id]) { n_faces++; } } faces.reserve(n_faces); for (size_t i = 0; i < poly.faces.size(); ++i) { const face_t &src = poly.faces[i]; if (src.manifold_id >= 0 && (unsigned)src.manifold_id < selected_manifolds.size() && selected_manifolds[src.manifold_id]) { faces.push_back(src); } } commonFaceInit(false); // calls setFaceAndVertexOwner() and init() } Polyhedron::Polyhedron(const Polyhedron &poly, int m_id) { size_t n_faces = 0; for (size_t i = 0; i < poly.faces.size(); ++i) { const face_t &src = poly.faces[i]; if (src.manifold_id == m_id) n_faces++; } faces.reserve(n_faces); for (size_t i = 0; i < poly.faces.size(); ++i) { const face_t &src = poly.faces[i]; if (src.manifold_id == m_id) faces.push_back(src); } commonFaceInit(false); // calls setFaceAndVertexOwner() and init() } Polyhedron::Polyhedron(const std::vector &_vertices, int n_faces, const std::vector &face_indices) { // The polyhedron is defined by a vector of vertices, which we // want to copy, and a face index list, from which we need to // generate a set of Faces. vertices.clear(); vertices.resize(_vertices.size()); for (size_t i = 0; i < _vertices.size(); ++i) { vertices[i].v = _vertices[i]; } faces.reserve(n_faces); std::vector::const_iterator iter = face_indices.begin(); std::vector v; for (int i = 0; i < n_faces; ++i) { int vertexCount = *iter++; v.clear(); while (vertexCount--) { CARVE_ASSERT(*iter >= 0); CARVE_ASSERT((unsigned)*iter < vertices.size()); v.push_back(&vertices[*iter++]); } faces.push_back(face_t(v)); } setFaceAndVertexOwner(); if (!init()) { throw carve::exception("polyhedron creation failed"); } } Polyhedron::Polyhedron(std::vector &_faces, std::vector &_vertices, bool _recalc) { faces.swap(_faces); vertices.swap(_vertices); setFaceAndVertexOwner(); if (_recalc) faceRecalc(); if (!init()) { throw carve::exception("polyhedron creation failed"); } } Polyhedron::Polyhedron(std::vector &_faces, bool _recalc) { faces.swap(_faces); commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init() } Polyhedron::Polyhedron(std::list &_faces, bool _recalc) { faces.reserve(_faces.size()); std::copy(_faces.begin(), _faces.end(), std::back_inserter(faces)); commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init() } void Polyhedron::collectFaceVertices(std::vector &faces, std::vector &vertices, std::unordered_map &vmap) { // Given a set of faces, copy all referenced vertices into a // single vertex array and update the faces to point into that // array. On exit, vmap contains a mapping from old pointer to // new pointer. vertices.clear(); vmap.clear(); for (size_t i = 0, il = faces.size(); i != il; ++i) { face_t &f = faces[i]; for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) { vmap[f.vertex(j)] = NULL; } } vertices.reserve(vmap.size()); for (std::unordered_map::iterator i = vmap.begin(), e = vmap.end(); i != e; ++i) { vertices.push_back(*(*i).first); (*i).second = &vertices.back(); } for (size_t i = 0, il = faces.size(); i != il; ++i) { face_t &f = faces[i]; for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) { f.vertex(j) = vmap[f.vertex(j)]; } } } void Polyhedron::collectFaceVertices(std::vector &faces, std::vector &vertices) { std::unordered_map vmap; collectFaceVertices(faces, vertices, vmap); } void Polyhedron::setFaceAndVertexOwner() { for (size_t i = 0; i < vertices.size(); ++i) vertices[i].owner = this; for (size_t i = 0; i < faces.size(); ++i) faces[i].owner = this; } void Polyhedron::commonFaceInit(bool _recalc) { collectFaceVertices(faces, vertices); setFaceAndVertexOwner(); if (_recalc) faceRecalc(); if (!init()) { throw carve::exception("polyhedron creation failed"); } } Polyhedron::~Polyhedron() { } void Polyhedron::testVertexAgainstClosedManifolds(const carve::geom3d::Vector &v, std::map &result, bool ignore_orientation) const { for (size_t i = 0; i < faces.size(); i++) { if (!manifold_is_closed[faces[i].manifold_id]) continue; // skip open manifolds if (faces[i].containsPoint(v)) { result[faces[i].manifold_id] = POINT_ON; } } double ray_len = aabb.extent.length() * 2; std::vector possible_faces; std::vector > manifold_intersections; boost::mt19937 rng; boost::uniform_on_sphere distrib(3); boost::variate_generator > gen(rng, distrib); for (;;) { carve::geom3d::Vector ray_dir; ray_dir = gen(); carve::geom3d::Vector v2 = v + ray_dir * ray_len; bool failed = false; carve::geom3d::LineSegment line(v, v2); carve::geom3d::Vector intersection; possible_faces.clear(); manifold_intersections.clear(); octree.findFacesNear(line, possible_faces); for (unsigned i = 0; !failed && i < possible_faces.size(); i++) { if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue; // skip open manifolds if (result.find(possible_faces[i]->manifold_id) != result.end()) continue; // already ON switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) { case INTERSECT_FACE: { manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection)); break; } case INTERSECT_NONE: { break; } default: { failed = true; break; } } } if (!failed) break; } std::vector crossings(manifold_is_closed.size(), 0); for (size_t i = 0; i < manifold_intersections.size(); ++i) { const face_t *f = manifold_intersections[i].first; crossings[f->manifold_id]++; } for (size_t i = 0; i < crossings.size(); ++i) { #if defined(CARVE_DEBUG) std::cerr << "crossing: " << i << " = " << crossings[i] << " is_negative = " << manifold_is_negative[i] << std::endl; #endif if (!manifold_is_closed[i]) continue; if (result.find(i) != result.end()) continue; PointClass pc = (crossings[i] & 1) ? POINT_IN : POINT_OUT; if (!ignore_orientation && manifold_is_negative[i]) pc = (PointClass)-pc; result[i] = pc; } } PointClass Polyhedron::containsVertex(const carve::geom3d::Vector &v, const face_t **hit_face, bool even_odd, int manifold_id) const { if (hit_face) *hit_face = NULL; #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{containsVertex " << v << "}" << std::endl; #endif if (!aabb.containsPoint(v)) { #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{final:OUT(aabb short circuit)}" << std::endl; #endif // XXX: if the top level manifolds are negative, this should be POINT_IN. // for the moment, this only works for a single manifold. if (manifold_is_negative.size() == 1 && manifold_is_negative[0]) return POINT_IN; return POINT_OUT; } for (size_t i = 0; i < faces.size(); i++) { if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue; // XXX: Do allow the tested vertex to be ON an open // manifold. This was here originally because of the // possibility of an open manifold contained within a closed // manifold. // if (!manifold_is_closed[faces[i].manifold_id]) continue; if (faces[i].containsPoint(v)) { #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{final:ON(hits face " << &faces[i] << ")}" << std::endl; #endif if (hit_face) *hit_face = &faces[i]; return POINT_ON; } } double ray_len = aabb.extent.length() * 2; std::vector possible_faces; std::vector > manifold_intersections; for (;;) { double a1 = random() / double(RAND_MAX) * M_TWOPI; double a2 = random() / double(RAND_MAX) * M_TWOPI; carve::geom3d::Vector ray_dir = carve::geom::VECTOR(sin(a1) * sin(a2), cos(a1) * sin(a2), cos(a2)); #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{testing ray: " << ray_dir << "}" << std::endl; #endif carve::geom3d::Vector v2 = v + ray_dir * ray_len; bool failed = false; carve::geom3d::LineSegment line(v, v2); carve::geom3d::Vector intersection; possible_faces.clear(); manifold_intersections.clear(); octree.findFacesNear(line, possible_faces); for (unsigned i = 0; !failed && i < possible_faces.size(); i++) { if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue; if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue; switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) { case INTERSECT_FACE: { #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{intersects face: " << possible_faces[i] << " dp: " << dot(ray_dir, possible_faces[i]->plane_eqn.N) << "}" << std::endl; #endif if (!even_odd && fabs(dot(ray_dir, possible_faces[i]->plane_eqn.N)) < EPSILON) { #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{failing(small dot product)}" << std::endl; #endif failed = true; break; } manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection)); break; } case INTERSECT_NONE: { break; } default: { #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{failing(degenerate intersection)}" << std::endl; #endif failed = true; break; } } } if (!failed) { if (even_odd) { return (manifold_intersections.size() & 1) ? POINT_IN : POINT_OUT; } #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{intersections ok [count:" << manifold_intersections.size() << "], sorting}" << std::endl; #endif carve::geom3d::sortInDirectionOfRay(ray_dir, manifold_intersections.begin(), manifold_intersections.end(), carve::geom3d::vec_adapt_pair_second()); std::vector crossings(manifold_is_closed.size(), 0); for (size_t i = 0; i < manifold_intersections.size(); ++i) { const face_t *f = manifold_intersections[i].first; if (dot(ray_dir, f->plane_eqn.N) < 0.0) { crossings[f->manifold_id]++; } else { crossings[f->manifold_id]--; } } #if defined(DEBUG_CONTAINS_VERTEX) for (size_t i = 0; i < crossings.size(); ++i) { std::cerr << "{manifold " << i << " crossing count: " << crossings[i] << "}" << std::endl; } #endif for (size_t i = 0; i < manifold_intersections.size(); ++i) { const face_t *f = manifold_intersections[i].first; #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{intersection at " << manifold_intersections[i].second << " id: " << f->manifold_id << " count: " << crossings[f->manifold_id] << "}" << std::endl; #endif if (crossings[f->manifold_id] < 0) { // inside this manifold. #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{final:IN}" << std::endl; #endif return POINT_IN; } else if (crossings[f->manifold_id] > 0) { // outside this manifold, but it's an infinite manifold. (for instance, an inverted cube) #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{final:OUT}" << std::endl; #endif return POINT_OUT; } } #if defined(DEBUG_CONTAINS_VERTEX) std::cerr << "{final:OUT(default)}" << std::endl; #endif return POINT_OUT; } } } void Polyhedron::findEdgesNear(const carve::geom::aabb<3> &aabb, std::vector &outEdges) const { outEdges.clear(); octree.findEdgesNear(aabb, outEdges); } void Polyhedron::findEdgesNear(const carve::geom3d::LineSegment &line, std::vector &outEdges) const { outEdges.clear(); octree.findEdgesNear(line, outEdges); } void Polyhedron::findEdgesNear(const carve::geom3d::Vector &v, std::vector &outEdges) const { outEdges.clear(); octree.findEdgesNear(v, outEdges); } void Polyhedron::findEdgesNear(const face_t &face, std::vector &edges) const { edges.clear(); octree.findEdgesNear(face, edges); } void Polyhedron::findEdgesNear(const edge_t &edge, std::vector &outEdges) const { outEdges.clear(); octree.findEdgesNear(edge, outEdges); } void Polyhedron::findFacesNear(const carve::geom3d::LineSegment &line, std::vector &outFaces) const { outFaces.clear(); octree.findFacesNear(line, outFaces); } void Polyhedron::findFacesNear(const carve::geom::aabb<3> &aabb, std::vector &outFaces) const { outFaces.clear(); octree.findFacesNear(aabb, outFaces); } void Polyhedron::findFacesNear(const edge_t &edge, std::vector &outFaces) const { outFaces.clear(); octree.findFacesNear(edge, outFaces); } void Polyhedron::transform(const carve::math::Matrix &xform) { for (size_t i = 0; i < vertices.size(); i++) { vertices[i].v = xform * vertices[i].v; } for (size_t i = 0; i < faces.size(); i++) { faces[i].recalc(); } init(); } void Polyhedron::print(std::ostream &o) const { o << "Polyhedron@" << this << " {" << std::endl; for (std::vector::const_iterator i = vertices.begin(), e = vertices.end(); i != e; ++i) { o << " V@" << &(*i) << " " << (*i).v << std::endl; } for (std::vector::const_iterator i = edges.begin(), e = edges.end(); i != e; ++i) { o << " E@" << &(*i) << " {" << std::endl; o << " V@" << (*i).v1 << " - " << "V@" << (*i).v2 << std::endl; const std::vector &faces = connectivity.edge_to_face[edgeToIndex_fast(&(*i))]; for (size_t j = 0; j < (faces.size() & ~1U); j += 2) { o << " fp: F@" << faces[j] << ", F@" << faces[j+1] << std::endl; } o << " }" << std::endl; } for (std::vector::const_iterator i = faces.begin(), e = faces.end(); i != e; ++i) { o << " F@" << &(*i) << " {" << std::endl; o << " vertices {" << std::endl; for (face_t::const_vertex_iter_t j = (*i).vbegin(), je = (*i).vend(); j != je; ++j) { o << " V@" << (*j) << std::endl; } o << " }" << std::endl; o << " edges {" << std::endl; for (face_t::const_edge_iter_t j = (*i).ebegin(), je = (*i).eend(); j != je; ++j) { o << " E@" << (*j) << std::endl; } carve::geom::plane<3> p = (*i).plane_eqn; o << " }" << std::endl; o << " normal " << (*i).plane_eqn.N << std::endl; o << " aabb " << (*i).aabb << std::endl; o << " plane_eqn "; carve::geom::operator<< <3>(o, p); o << std::endl; o << " }" << std::endl; } o << "}" << std::endl; } void Polyhedron::canonicalize() { orderVertices(); for (size_t i = 0; i < faces.size(); i++) { face_t &f = faces[i]; size_t j = std::distance(f.vbegin(), std::min_element(f.vbegin(), f.vend())); if (j) { { std::vector temp; temp.reserve(f.nVertices()); std::copy(f.vbegin() + j, f.vend(), std::back_inserter(temp)); std::copy(f.vbegin(), f.vbegin() + j, std::back_inserter(temp)); std::copy(temp.begin(), temp.end(), f.vbegin()); } { std::vector temp; temp.reserve(f.nEdges()); std::copy(f.ebegin() + j, f.eend(), std::back_inserter(temp)); std::copy(f.ebegin(), f.ebegin() + j, std::back_inserter(temp)); std::copy(temp.begin(), temp.end(), f.ebegin()); } } } std::vector face_ptrs; face_ptrs.reserve(faces.size()); for (size_t i = 0; i < faces.size(); ++i) face_ptrs.push_back(&faces[i]); std::sort(face_ptrs.begin(), face_ptrs.end(), order_faces()); std::vector sorted_faces; sorted_faces.reserve(faces.size()); for (size_t i = 0; i < faces.size(); ++i) sorted_faces.push_back(*face_ptrs[i]); std::swap(faces, sorted_faces); } } }