// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2019 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // // Computation of the Jacobian matrix for vector-valued functions of multiple // variables, using automatic differentiation based on the implementation of // dual numbers in jet.h. Before reading the rest of this file, it is advisable // to read jet.h's header comment in detail. // // The helper wrapper AutoDifferentiate() computes the jacobian of // functors with templated operator() taking this form: // // struct F { // template // bool operator()(const T *x, const T *y, ..., T *z) { // // Compute z[] based on x[], y[], ... // // return true if computation succeeded, false otherwise. // } // }; // // All inputs and outputs may be vector-valued. // // To understand how jets are used to compute the jacobian, a // picture may help. Consider a vector-valued function, F, returning 3 // dimensions and taking a vector-valued parameter of 4 dimensions: // // y x // [ * ] F [ * ] // [ * ] <--- [ * ] // [ * ] [ * ] // [ * ] // // Similar to the 2-parameter example for f described in jet.h, computing the // jacobian dy/dx is done by substituting a suitable jet object for x and all // intermediate steps of the computation of F. Since x is has 4 dimensions, use // a Jet. // // Before substituting a jet object for x, the dual components are set // appropriately for each dimension of x: // // y x // [ * | * * * * ] f [ * | 1 0 0 0 ] x0 // [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1 // [ * | * * * * ] [ * | 0 0 1 0 ] x2 // ---+--- [ * | 0 0 0 1 ] x3 // | ^ ^ ^ ^ // dy/dx | | | +----- infinitesimal for x3 // | | +------- infinitesimal for x2 // | +--------- infinitesimal for x1 // +----------- infinitesimal for x0 // // The reason to set the internal 4x4 submatrix to the identity is that we wish // to take the derivative of y separately with respect to each dimension of x. // Each column of the 4x4 identity is therefore for a single component of the // independent variable x. // // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the // extended y vector, indicated in the above diagram. // // Functors with multiple parameters // --------------------------------- // In practice, it is often convenient to use a function f of two or more // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet // framework is designed for a single-parameter vector-valued input. The wrapper // in this file addresses this issue adding support for functions with one or // more parameter vectors. // // To support multiple parameters, all the parameter vectors are concatenated // into one and treated as a single parameter vector, except that since the // functor expects different inputs, we need to construct the jets as if they // were part of a single parameter vector. The extended jets are passed // separately for each parameter. // // For example, consider a functor F taking two vector parameters, p[2] and // q[3], and producing an output y[4]: // // struct F { // template // bool operator()(const T *p, const T *q, T *z) { // // ... // } // }; // // In this case, the necessary jet type is Jet. Here is a // visualization of the jet objects in this case: // // Dual components for p ----+ // | // -+- // y [ * | 1 0 | 0 0 0 ] --- p[0] // [ * | 0 1 | 0 0 0 ] --- p[1] // [ * | . . | + + + ] | // [ * | . . | + + + ] v // [ * | . . | + + + ] <--- F(p, q) // [ * | . . | + + + ] ^ // ^^^ ^^^^^ | // dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0] // [ * | 0 0 | 0 1 0 ] --- q[1] // [ * | 0 0 | 0 0 1 ] --- q[2] // --+-- // | // Dual components for q --------------+ // // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+" // of y in the above diagram are the derivatives of y with respect to p and q // respectively. This is how autodiff works for functors taking multiple vector // valued arguments (up to 6). // // Jacobian NULL pointers // ---------------------- // In general, the functions below will accept NULL pointers for all or some of // the Jacobian parameters, meaning that those Jacobians will not be computed. #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_ #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_ #include #include #include #include "ceres/internal/array_selector.h" #include "ceres/internal/eigen.h" #include "ceres/internal/fixed_array.h" #include "ceres/internal/parameter_dims.h" #include "ceres/internal/variadic_evaluate.h" #include "ceres/jet.h" #include "ceres/types.h" #include "glog/logging.h" // If the number of parameters exceeds this values, the corresponding jets are // placed on the heap. This will reduce performance by a factor of 2-5 on // current compilers. #ifndef CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK #define CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK 50 #endif #ifndef CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK #define CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK 20 #endif namespace ceres { namespace internal { // Extends src by a 1st order perturbation for every dimension and puts it in // dst. The size of src is N. Since this is also used for perturbations in // blocked arrays, offset is used to shift which part of the jet the // perturbation occurs. This is used to set up the extended x augmented by an // identity matrix. The JetT type should be a Jet type, and T should be a // numeric type (e.g. double). For example, // // 0 1 2 3 4 5 6 7 8 // dst[0] [ * | . . | 1 0 0 | . . . ] // dst[1] [ * | . . | 0 1 0 | . . . ] // dst[2] [ * | . . | 0 0 1 | . . . ] // // is what would get put in dst if N was 3, offset was 3, and the jet type JetT // was 8-dimensional. template struct Make1stOrderPerturbation { public: inline static void Apply(const T* src, JetT* dst) { if (j == 0) { DCHECK(src); DCHECK(dst); } dst[j] = JetT(src[j], j + Offset); Make1stOrderPerturbation::Apply(src, dst); } }; template struct Make1stOrderPerturbation { public: static void Apply(const T* /*src*/, JetT* /*dst*/) {} }; // Calls Make1stOrderPerturbation for every parameter block. // // Example: // If one having three parameter blocks with dimensions (3, 2, 4), the call // Make1stOrderPerturbations::Apply(params, x); // will result in the following calls to Make1stOrderPerturbation: // Make1stOrderPerturbation<0, 3, 0>::Apply(params[0], x + 0); // Make1stOrderPerturbation<0, 2, 3>::Apply(params[1], x + 3); // Make1stOrderPerturbation<0, 4, 5>::Apply(params[2], x + 5); template struct Make1stOrderPerturbations; template struct Make1stOrderPerturbations, ParameterIdx, Offset> { template inline static void Apply(T const* const* parameters, JetT* x) { Make1stOrderPerturbation<0, N, Offset, T, JetT>::Apply( parameters[ParameterIdx], x + Offset); Make1stOrderPerturbations, ParameterIdx + 1, Offset + N>::Apply(parameters, x); } }; // End of 'recursion'. Nothing more to do. template struct Make1stOrderPerturbations, ParameterIdx, Total> { template static void Apply(T const* const* /* NOT USED */, JetT* /* NOT USED */) {} }; // Takes the 0th order part of src, assumed to be a Jet type, and puts it in // dst. This is used to pick out the "vector" part of the extended y. template inline void Take0thOrderPart(int M, const JetT* src, T dst) { DCHECK(src); for (int i = 0; i < M; ++i) { dst[i] = src[i].a; } } // Takes N 1st order parts, starting at index N0, and puts them in the M x N // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y. template inline void Take1stOrderPart(const int M, const JetT* src, T* dst) { DCHECK(src); DCHECK(dst); for (int i = 0; i < M; ++i) { Eigen::Map>(dst + N * i, N) = src[i].v.template segment(N0); } } // Calls Take1stOrderPart for every parameter block. // // Example: // If one having three parameter blocks with dimensions (3, 2, 4), the call // Take1stOrderParts::Apply(num_outputs, // output, // jacobians); // will result in the following calls to Take1stOrderPart: // if (jacobians[0]) { // Take1stOrderPart<0, 3>(num_outputs, output, jacobians[0]); // } // if (jacobians[1]) { // Take1stOrderPart<3, 2>(num_outputs, output, jacobians[1]); // } // if (jacobians[2]) { // Take1stOrderPart<5, 4>(num_outputs, output, jacobians[2]); // } template struct Take1stOrderParts; template struct Take1stOrderParts, ParameterIdx, Offset> { template inline static void Apply(int num_outputs, JetT* output, T** jacobians) { if (jacobians[ParameterIdx]) { Take1stOrderPart(num_outputs, output, jacobians[ParameterIdx]); } Take1stOrderParts, ParameterIdx + 1, Offset + N>::Apply(num_outputs, output, jacobians); } }; // End of 'recursion'. Nothing more to do. template struct Take1stOrderParts, ParameterIdx, Offset> { template static void Apply(int /* NOT USED*/, JetT* /* NOT USED*/, T** /* NOT USED */) {} }; template inline bool AutoDifferentiate(const Functor& functor, T const* const* parameters, int dynamic_num_outputs, T* function_value, T** jacobians) { typedef Jet JetT; using Parameters = typename ParameterDims::Parameters; if (kNumResiduals != DYNAMIC) { DCHECK_EQ(kNumResiduals, dynamic_num_outputs); } ArraySelector parameters_as_jets(ParameterDims::kNumParameters); // Pointers to the beginning of each parameter block std::array unpacked_parameters = ParameterDims::GetUnpackedParameters(parameters_as_jets.data()); // If the number of residuals is fixed, we use the template argument as the // number of outputs. Otherwise we use the num_outputs parameter. Note: The // ?-operator here is compile-time evaluated, therefore num_outputs is also // a compile-time constant for functors with fixed residuals. const int num_outputs = kNumResiduals == DYNAMIC ? dynamic_num_outputs : kNumResiduals; DCHECK_GT(num_outputs, 0); ArraySelector residuals_as_jets(num_outputs); // Invalidate the output Jets, so that we can detect if the user // did not assign values to all of them. for (int i = 0; i < num_outputs; ++i) { residuals_as_jets[i].a = kImpossibleValue; residuals_as_jets[i].v.setConstant(kImpossibleValue); } Make1stOrderPerturbations::Apply(parameters, parameters_as_jets.data()); if (!VariadicEvaluate( functor, unpacked_parameters.data(), residuals_as_jets.data())) { return false; } Take0thOrderPart(num_outputs, residuals_as_jets.data(), function_value); Take1stOrderParts::Apply( num_outputs, residuals_as_jets.data(), jacobians); return true; } } // namespace internal } // namespace ceres #endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_