// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2022 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/block_random_access_sparse_matrix.h" #include #include #include #include #include #include "ceres/internal/export.h" #include "ceres/triplet_sparse_matrix.h" #include "ceres/types.h" #include "glog/logging.h" namespace ceres { namespace internal { using std::make_pair; using std::pair; using std::set; using std::vector; BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix( const vector& blocks, const set>& block_pairs) : kMaxRowBlocks(10 * 1000 * 1000), blocks_(blocks) { CHECK_LT(blocks.size(), kMaxRowBlocks); // Build the row/column layout vector and count the number of scalar // rows/columns. int num_cols = 0; block_positions_.reserve(blocks_.size()); for (int block_size : blocks_) { block_positions_.push_back(num_cols); num_cols += block_size; } // Count the number of scalar non-zero entries and build the layout // object for looking into the values array of the // TripletSparseMatrix. int num_nonzeros = 0; for (const auto& block_pair : block_pairs) { const int row_block_size = blocks_[block_pair.first]; const int col_block_size = blocks_[block_pair.second]; num_nonzeros += row_block_size * col_block_size; } VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] " << num_nonzeros; tsm_ = std::make_unique(num_cols, num_cols, num_nonzeros); tsm_->set_num_nonzeros(num_nonzeros); int* rows = tsm_->mutable_rows(); int* cols = tsm_->mutable_cols(); double* values = tsm_->mutable_values(); int pos = 0; for (const auto& block_pair : block_pairs) { const int row_block_size = blocks_[block_pair.first]; const int col_block_size = blocks_[block_pair.second]; cell_values_.emplace_back(block_pair, values + pos); layout_[IntPairToLong(block_pair.first, block_pair.second)] = new CellInfo(values + pos); pos += row_block_size * col_block_size; } // Fill the sparsity pattern of the underlying matrix. for (const auto& block_pair : block_pairs) { const int row_block_id = block_pair.first; const int col_block_id = block_pair.second; const int row_block_size = blocks_[row_block_id]; const int col_block_size = blocks_[col_block_id]; int pos = layout_[IntPairToLong(row_block_id, col_block_id)]->values - values; for (int r = 0; r < row_block_size; ++r) { for (int c = 0; c < col_block_size; ++c, ++pos) { rows[pos] = block_positions_[row_block_id] + r; cols[pos] = block_positions_[col_block_id] + c; values[pos] = 1.0; DCHECK_LT(rows[pos], tsm_->num_rows()); DCHECK_LT(cols[pos], tsm_->num_rows()); } } } } // Assume that the user does not hold any locks on any cell blocks // when they are calling SetZero. BlockRandomAccessSparseMatrix::~BlockRandomAccessSparseMatrix() { for (const auto& entry : layout_) { delete entry.second; } } CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id, int col_block_id, int* row, int* col, int* row_stride, int* col_stride) { const LayoutType::iterator it = layout_.find(IntPairToLong(row_block_id, col_block_id)); if (it == layout_.end()) { return nullptr; } // Each cell is stored contiguously as its own little dense matrix. *row = 0; *col = 0; *row_stride = blocks_[row_block_id]; *col_stride = blocks_[col_block_id]; return it->second; } // Assume that the user does not hold any locks on any cell blocks // when they are calling SetZero. void BlockRandomAccessSparseMatrix::SetZero() { if (tsm_->num_nonzeros()) { VectorRef(tsm_->mutable_values(), tsm_->num_nonzeros()).setZero(); } } void BlockRandomAccessSparseMatrix::SymmetricRightMultiply(const double* x, double* y) const { for (const auto& cell_position_and_data : cell_values_) { const int row = cell_position_and_data.first.first; const int row_block_size = blocks_[row]; const int row_block_pos = block_positions_[row]; const int col = cell_position_and_data.first.second; const int col_block_size = blocks_[col]; const int col_block_pos = block_positions_[col]; MatrixVectorMultiply( cell_position_and_data.second, row_block_size, col_block_size, x + col_block_pos, y + row_block_pos); // Since the matrix is symmetric, but only the upper triangular // part is stored, if the block being accessed is not a diagonal // block, then use the same block to do the corresponding lower // triangular multiply also. if (row != col) { MatrixTransposeVectorMultiply( cell_position_and_data.second, row_block_size, col_block_size, x + row_block_pos, y + col_block_pos); } } } } // namespace internal } // namespace ceres