// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2015 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Interface for and implementation of various Line search algorithms. #ifndef CERES_INTERNAL_LINE_SEARCH_H_ #define CERES_INTERNAL_LINE_SEARCH_H_ #include #include #include "ceres/function_sample.h" #include "ceres/internal/eigen.h" #include "ceres/internal/port.h" #include "ceres/types.h" namespace ceres { namespace internal { class Evaluator; class LineSearchFunction; // Line search is another name for a one dimensional optimization // algorithm. The name "line search" comes from the fact one // dimensional optimization problems that arise as subproblems of // general multidimensional optimization problems. // // While finding the exact minimum of a one dimensional function is // hard, instances of LineSearch find a point that satisfies a // sufficient decrease condition. Depending on the particular // condition used, we get a variety of different line search // algorithms, e.g., Armijo, Wolfe etc. class LineSearch { public: struct Summary; struct Options { // Degree of the polynomial used to approximate the objective // function. LineSearchInterpolationType interpolation_type = CUBIC; // Armijo and Wolfe line search parameters. // Solving the line search problem exactly is computationally // prohibitive. Fortunately, line search based optimization // algorithms can still guarantee convergence if instead of an // exact solution, the line search algorithm returns a solution // which decreases the value of the objective function // sufficiently. More precisely, we are looking for a step_size // s.t. // // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size double sufficient_decrease = 1e-4; // In each iteration of the Armijo / Wolfe line search, // // new_step_size >= max_step_contraction * step_size // // Note that by definition, for contraction: // // 0 < max_step_contraction < min_step_contraction < 1 // double max_step_contraction = 1e-3; // In each iteration of the Armijo / Wolfe line search, // // new_step_size <= min_step_contraction * step_size // Note that by definition, for contraction: // // 0 < max_step_contraction < min_step_contraction < 1 // double min_step_contraction = 0.9; // If during the line search, the step_size falls below this // value, it is truncated to zero. double min_step_size = 1e-9; // Maximum number of trial step size iterations during each line search, // if a step size satisfying the search conditions cannot be found within // this number of trials, the line search will terminate. int max_num_iterations = 20; // Wolfe-specific line search parameters. // The strong Wolfe conditions consist of the Armijo sufficient // decrease condition, and an additional requirement that the // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe // conditions) of the gradient along the search direction // decreases sufficiently. Precisely, this second condition // is that we seek a step_size s.t. // // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)| // // Where f() is the line search objective and f'() is the derivative // of f w.r.t step_size (d f / d step_size). double sufficient_curvature_decrease = 0.9; // During the bracketing phase of the Wolfe search, the step size is // increased until either a point satisfying the Wolfe conditions is // found, or an upper bound for a bracket containing a point satisfying // the conditions is found. Precisely, at each iteration of the // expansion: // // new_step_size <= max_step_expansion * step_size. // // By definition for expansion, max_step_expansion > 1.0. double max_step_expansion = 10; bool is_silent = false; // The one dimensional function that the line search algorithm // minimizes. LineSearchFunction* function = nullptr; }; // Result of the line search. struct Summary { bool success = false; FunctionSample optimal_point; int num_function_evaluations = 0; int num_gradient_evaluations = 0; int num_iterations = 0; // Cumulative time spent evaluating the value of the cost function across // all iterations. double cost_evaluation_time_in_seconds = 0.0; // Cumulative time spent evaluating the gradient of the cost function across // all iterations. double gradient_evaluation_time_in_seconds = 0.0; // Cumulative time spent minimizing the interpolating polynomial to compute // the next candidate step size across all iterations. double polynomial_minimization_time_in_seconds = 0.0; double total_time_in_seconds = 0.0; std::string error; }; explicit LineSearch(const LineSearch::Options& options); virtual ~LineSearch() {} static LineSearch* Create(const LineSearchType line_search_type, const LineSearch::Options& options, std::string* error); // Perform the line search. // // step_size_estimate must be a positive number. // // initial_cost and initial_gradient are the values and gradient of // the function at zero. // summary must not be null and will contain the result of the line // search. // // Summary::success is true if a non-zero step size is found. void Search(double step_size_estimate, double initial_cost, double initial_gradient, Summary* summary) const; double InterpolatingPolynomialMinimizingStepSize( const LineSearchInterpolationType& interpolation_type, const FunctionSample& lowerbound_sample, const FunctionSample& previous_sample, const FunctionSample& current_sample, const double min_step_size, const double max_step_size) const; protected: const LineSearch::Options& options() const { return options_; } private: virtual void DoSearch(double step_size_estimate, double initial_cost, double initial_gradient, Summary* summary) const = 0; private: LineSearch::Options options_; }; // An object used by the line search to access the function values // and gradient of the one dimensional function being optimized. // // In practice, this object provides access to the objective // function value and the directional derivative of the underlying // optimization problem along a specific search direction. class LineSearchFunction { public: explicit LineSearchFunction(Evaluator* evaluator); void Init(const Vector& position, const Vector& direction); // Evaluate the line search objective // // f(x) = p(position + x * direction) // // Where, p is the objective function of the general optimization // problem. // // evaluate_gradient controls whether the gradient will be evaluated // or not. // // On return output->*_is_valid indicate indicate whether the // corresponding fields have numerically valid values or not. void Evaluate(double x, bool evaluate_gradient, FunctionSample* output); double DirectionInfinityNorm() const; // Resets to now, the start point for the results from TimeStatistics(). void ResetTimeStatistics(); void TimeStatistics(double* cost_evaluation_time_in_seconds, double* gradient_evaluation_time_in_seconds) const; const Vector& position() const { return position_; } const Vector& direction() const { return direction_; } private: Evaluator* evaluator_; Vector position_; Vector direction_; // scaled_direction = x * direction_; Vector scaled_direction_; // We may not exclusively own the evaluator (e.g. in the Trust Region // minimizer), hence we need to save the initial evaluation durations for the // value & gradient to accurately determine the duration of the evaluations // we invoked. These are reset by a call to ResetTimeStatistics(). double initial_evaluator_residual_time_in_seconds; double initial_evaluator_jacobian_time_in_seconds; }; // Backtracking and interpolation based Armijo line search. This // implementation is based on the Armijo line search that ships in the // minFunc package by Mark Schmidt. // // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html class ArmijoLineSearch : public LineSearch { public: explicit ArmijoLineSearch(const LineSearch::Options& options); virtual ~ArmijoLineSearch() {} private: void DoSearch(double step_size_estimate, double initial_cost, double initial_gradient, Summary* summary) const final; }; // Bracketing / Zoom Strong Wolfe condition line search. This implementation // is based on the pseudo-code algorithm presented in Nocedal & Wright [1] // (p60-61) with inspiration from the WolfeLineSearch which ships with the // minFunc package by Mark Schmidt [2]. // // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999. // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html. class WolfeLineSearch : public LineSearch { public: explicit WolfeLineSearch(const LineSearch::Options& options); virtual ~WolfeLineSearch() {} // Returns true iff either a valid point, or valid bracket are found. bool BracketingPhase(const FunctionSample& initial_position, const double step_size_estimate, FunctionSample* bracket_low, FunctionSample* bracket_high, bool* perform_zoom_search, Summary* summary) const; // Returns true iff final_line_sample satisfies strong Wolfe conditions. bool ZoomPhase(const FunctionSample& initial_position, FunctionSample bracket_low, FunctionSample bracket_high, FunctionSample* solution, Summary* summary) const; private: void DoSearch(double step_size_estimate, double initial_cost, double initial_gradient, Summary* summary) const final; }; } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_LINE_SEARCH_H_