/* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --- Optional exception to the license --- As an exception, if, as a result of your compiling your source code, portions of this Software are embedded into a machine-executable object form of such source code, you may redistribute such embedded portions in such object form without including the above copyright and permission notices. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include // std::signbit #include // uint32_t #include // std::numeric_limits #include // std::uninitialized_copy #include // std::runtime_error #include // std::system_error #include // std::swap #ifdef __cpp_lib_bit_cast # include // std::bitcast #endif #include "core.h" #if FMT_GCC_VERSION # define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) #else # define FMT_GCC_VISIBILITY_HIDDEN #endif #ifdef __NVCC__ # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) #else # define FMT_CUDA_VERSION 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_NOINLINE __attribute__((noinline)) #else # define FMT_NOINLINE #endif #if FMT_MSC_VER # define FMT_MSC_DEFAULT = default #else # define FMT_MSC_DEFAULT #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER || FMT_NVCC FMT_BEGIN_NAMESPACE namespace detail { template inline void do_throw(const Exception& x) { // Silence unreachable code warnings in MSVC and NVCC because these // are nearly impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } // namespace detail FMT_END_NAMESPACE # define FMT_THROW(x) detail::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) \ do { \ FMT_ASSERT(false, (x).what()); \ } while (false) # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifndef FMT_MAYBE_UNUSED # if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) # define FMT_MAYBE_UNUSED [[maybe_unused]] # else # define FMT_MAYBE_UNUSED # endif #endif // Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers. #if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC # define FMT_DEPRECATED_ALIAS #else # define FMT_DEPRECATED_ALIAS FMT_DEPRECATED #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ FMT_MSC_VER >= 1900) && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of // integer formatter template instantiations to just one by only using the // largest integer type. This results in a reduction in binary size but will // cause a decrease in integer formatting performance. #if !defined(FMT_REDUCE_INT_INSTANTIATIONS) # define FMT_REDUCE_INT_INSTANTIATIONS 0 #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519. #if !FMT_MSC_VER # if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) # endif # if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) # endif #endif // __builtin_ctz is broken in Intel Compiler Classic on Windows: // https://github.com/fmtlib/fmt/issues/2510. #ifndef __ICL # if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION # define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) # endif # if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || FMT_ICC_VERSION # define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) # endif #endif #if FMT_MSC_VER # include // _BitScanReverse[64], _BitScanForward[64], _umul128 #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(FMT_BUILTIN_CTZLL) FMT_BEGIN_NAMESPACE namespace detail { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # if !defined(__clang__) # pragma intrinsic(_BitScanForward) # pragma intrinsic(_BitScanReverse) # if defined(_WIN64) # pragma intrinsic(_BitScanForward64) # pragma intrinsic(_BitScanReverse64) # endif # endif inline auto clz(uint32_t x) -> int { unsigned long r = 0; _BitScanReverse(&r, x); FMT_ASSERT(x != 0, ""); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. FMT_MSC_WARNING(suppress : 6102) return 31 ^ static_cast(r); } # define FMT_BUILTIN_CLZ(n) detail::clz(n) inline auto clzll(uint64_t x) -> int { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast(x >> 32))) return 63 ^ (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast(x)); # endif FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return 63 ^ static_cast(r); } # define FMT_BUILTIN_CLZLL(n) detail::clzll(n) inline auto ctz(uint32_t x) -> int { unsigned long r = 0; _BitScanForward(&r, x); FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return static_cast(r); } # define FMT_BUILTIN_CTZ(n) detail::ctz(n) inline auto ctzll(uint64_t x) -> int { unsigned long r = 0; FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. # ifdef _WIN64 _BitScanForward64(&r, x); # else // Scan the low 32 bits. if (_BitScanForward(&r, static_cast(x))) return static_cast(r); // Scan the high 32 bits. _BitScanForward(&r, static_cast(x >> 32)); r += 32; # endif return static_cast(r); } # define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) } // namespace detail FMT_END_NAMESPACE #endif #ifdef FMT_HEADER_ONLY # define FMT_HEADER_ONLY_CONSTEXPR20 FMT_CONSTEXPR20 #else # define FMT_HEADER_ONLY_CONSTEXPR20 #endif FMT_BEGIN_NAMESPACE namespace detail { template class formatbuf : public Streambuf { private: using char_type = typename Streambuf::char_type; using streamsize = decltype(std::declval().sputn(nullptr, 0)); using int_type = typename Streambuf::int_type; using traits_type = typename Streambuf::traits_type; buffer& buffer_; public: explicit formatbuf(buffer& buf) : buffer_(buf) {} protected: // The put area is always empty. This makes the implementation simpler and has // the advantage that the streambuf and the buffer are always in sync and // sputc never writes into uninitialized memory. A disadvantage is that each // call to sputc always results in a (virtual) call to overflow. There is no // disadvantage here for sputn since this always results in a call to xsputn. auto overflow(int_type ch) -> int_type override { if (!traits_type::eq_int_type(ch, traits_type::eof())) buffer_.push_back(static_cast(ch)); return ch; } auto xsputn(const char_type* s, streamsize count) -> streamsize override { buffer_.append(s, s + count); return count; } }; // Implementation of std::bit_cast for pre-C++20. template FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To { static_assert(sizeof(To) == sizeof(From), "size mismatch"); #ifdef __cpp_lib_bit_cast if (is_constant_evaluated()) return std::bit_cast(from); #endif auto to = To(); std::memcpy(&to, &from, sizeof(to)); return to; } inline auto is_big_endian() -> bool { #ifdef _WIN32 return false; #elif defined(__BIG_ENDIAN__) return true; #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__; #else struct bytes { char data[sizeof(int)]; }; return bit_cast(1).data[0] == 0; #endif } // A fallback implementation of uintptr_t for systems that lack it. struct fallback_uintptr { unsigned char value[sizeof(void*)]; fallback_uintptr() = default; explicit fallback_uintptr(const void* p) { *this = bit_cast(p); if (const_check(is_big_endian())) { for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j) std::swap(value[i], value[j]); } } }; #ifdef UINTPTR_MAX using uintptr_t = ::uintptr_t; inline auto to_uintptr(const void* p) -> uintptr_t { return bit_cast(p); } #else using uintptr_t = fallback_uintptr; inline auto to_uintptr(const void* p) -> fallback_uintptr { return fallback_uintptr(p); } #endif // Returns the largest possible value for type T. Same as // std::numeric_limits::max() but shorter and not affected by the max macro. template constexpr auto max_value() -> T { return (std::numeric_limits::max)(); } template constexpr auto num_bits() -> int { return std::numeric_limits::digits; } // std::numeric_limits::digits may return 0 for 128-bit ints. template <> constexpr auto num_bits() -> int { return 128; } template <> constexpr auto num_bits() -> int { return 128; } template <> constexpr auto num_bits() -> int { return static_cast(sizeof(void*) * std::numeric_limits::digits); } FMT_INLINE void assume(bool condition) { (void)condition; #if FMT_HAS_BUILTIN(__builtin_assume) __builtin_assume(condition); #endif } // An approximation of iterator_t for pre-C++20 systems. template using iterator_t = decltype(std::begin(std::declval())); template using sentinel_t = decltype(std::end(std::declval())); // A workaround for std::string not having mutable data() until C++17. template inline auto get_data(std::basic_string& s) -> Char* { return &s[0]; } template inline auto get_data(Container& c) -> typename Container::value_type* { return c.data(); } #if defined(_SECURE_SCL) && _SECURE_SCL // Make a checked iterator to avoid MSVC warnings. template using checked_ptr = stdext::checked_array_iterator; template constexpr auto make_checked(T* p, size_t size) -> checked_ptr { return {p, size}; } #else template using checked_ptr = T*; template constexpr auto make_checked(T* p, size_t) -> T* { return p; } #endif // Attempts to reserve space for n extra characters in the output range. // Returns a pointer to the reserved range or a reference to it. template ::value)> #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION __attribute__((no_sanitize("undefined"))) #endif inline auto reserve(std::back_insert_iterator it, size_t n) -> checked_ptr { Container& c = get_container(it); size_t size = c.size(); c.resize(size + n); return make_checked(get_data(c) + size, n); } template inline auto reserve(buffer_appender it, size_t n) -> buffer_appender { buffer& buf = get_container(it); buf.try_reserve(buf.size() + n); return it; } template constexpr auto reserve(Iterator& it, size_t) -> Iterator& { return it; } template using reserve_iterator = remove_reference_t(), 0))>; template constexpr auto to_pointer(OutputIt, size_t) -> T* { return nullptr; } template auto to_pointer(buffer_appender it, size_t n) -> T* { buffer& buf = get_container(it); auto size = buf.size(); if (buf.capacity() < size + n) return nullptr; buf.try_resize(size + n); return buf.data() + size; } template ::value)> inline auto base_iterator(std::back_insert_iterator& it, checked_ptr) -> std::back_insert_iterator { return it; } template constexpr auto base_iterator(Iterator, Iterator it) -> Iterator { return it; } // is spectacularly slow to compile in C++20 so use a simple fill_n // instead (#1998). template FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value) -> OutputIt { for (Size i = 0; i < count; ++i) *out++ = value; return out; } template FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* { if (is_constant_evaluated()) { return fill_n(out, count, value); } std::memset(out, value, to_unsigned(count)); return out + count; } #ifdef __cpp_char8_t using char8_type = char8_t; #else enum char8_type : unsigned char {}; #endif template FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end, OutputIt out) -> OutputIt { return copy_str(begin, end, out); } // A public domain branchless UTF-8 decoder by Christopher Wellons: // https://github.com/skeeto/branchless-utf8 /* Decode the next character, c, from s, reporting errors in e. * * Since this is a branchless decoder, four bytes will be read from the * buffer regardless of the actual length of the next character. This * means the buffer _must_ have at least three bytes of zero padding * following the end of the data stream. * * Errors are reported in e, which will be non-zero if the parsed * character was somehow invalid: invalid byte sequence, non-canonical * encoding, or a surrogate half. * * The function returns a pointer to the next character. When an error * occurs, this pointer will be a guess that depends on the particular * error, but it will always advance at least one byte. */ FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e) -> const char* { constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; constexpr const int shiftc[] = {0, 18, 12, 6, 0}; constexpr const int shifte[] = {0, 6, 4, 2, 0}; int len = code_point_length(s); const char* next = s + len; // Assume a four-byte character and load four bytes. Unused bits are // shifted out. *c = uint32_t(s[0] & masks[len]) << 18; *c |= uint32_t(s[1] & 0x3f) << 12; *c |= uint32_t(s[2] & 0x3f) << 6; *c |= uint32_t(s[3] & 0x3f) << 0; *c >>= shiftc[len]; // Accumulate the various error conditions. using uchar = unsigned char; *e = (*c < mins[len]) << 6; // non-canonical encoding *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? *e |= (*c > 0x10FFFF) << 8; // out of range? *e |= (uchar(s[1]) & 0xc0) >> 2; *e |= (uchar(s[2]) & 0xc0) >> 4; *e |= uchar(s[3]) >> 6; *e ^= 0x2a; // top two bits of each tail byte correct? *e >>= shifte[len]; return next; } constexpr uint32_t invalid_code_point = ~uint32_t(); // Invokes f(cp, sv) for every code point cp in s with sv being the string view // corresponding to the code point. cp is invalid_code_point on error. template FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { auto decode = [f](const char* buf_ptr, const char* ptr) { auto cp = uint32_t(); auto error = 0; auto end = utf8_decode(buf_ptr, &cp, &error); bool result = f(error ? invalid_code_point : cp, string_view(ptr, to_unsigned(end - buf_ptr))); return result ? end : nullptr; }; auto p = s.data(); const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. if (s.size() >= block_size) { for (auto end = p + s.size() - block_size + 1; p < end;) { p = decode(p, p); if (!p) return; } } if (auto num_chars_left = s.data() + s.size() - p) { char buf[2 * block_size - 1] = {}; copy_str(p, p + num_chars_left, buf); const char* buf_ptr = buf; do { auto end = decode(buf_ptr, p); if (!end) return; p += end - buf_ptr; buf_ptr = end; } while (buf_ptr - buf < num_chars_left); } } template inline auto compute_width(basic_string_view s) -> size_t { return s.size(); } // Computes approximate display width of a UTF-8 string. FMT_CONSTEXPR inline size_t compute_width(string_view s) { size_t num_code_points = 0; // It is not a lambda for compatibility with C++14. struct count_code_points { size_t* count; FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool { *count += detail::to_unsigned( 1 + (cp >= 0x1100 && (cp <= 0x115f || // Hangul Jamo init. consonants cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE: (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms (cp >= 0x20000 && cp <= 0x2fffd) || // CJK (cp >= 0x30000 && cp <= 0x3fffd) || // Miscellaneous Symbols and Pictographs + Emoticons: (cp >= 0x1f300 && cp <= 0x1f64f) || // Supplemental Symbols and Pictographs: (cp >= 0x1f900 && cp <= 0x1f9ff)))); return true; } }; for_each_codepoint(s, count_code_points{&num_code_points}); return num_code_points; } inline auto compute_width(basic_string_view s) -> size_t { return compute_width(basic_string_view( reinterpret_cast(s.data()), s.size())); } template inline auto code_point_index(basic_string_view s, size_t n) -> size_t { size_t size = s.size(); return n < size ? n : size; } // Calculates the index of the nth code point in a UTF-8 string. inline auto code_point_index(basic_string_view s, size_t n) -> size_t { const char8_type* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; } return s.size(); } template ::value> struct is_fast_float : bool_constant::is_iec559 && sizeof(T) <= sizeof(double)> {}; template struct is_fast_float : std::false_type {}; #ifndef FMT_USE_FULL_CACHE_DRAGONBOX # define FMT_USE_FULL_CACHE_DRAGONBOX 0 #endif template template void buffer::append(const U* begin, const U* end) { while (begin != end) { auto count = to_unsigned(end - begin); try_reserve(size_ + count); auto free_cap = capacity_ - size_; if (free_cap < count) count = free_cap; std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); size_ += count; begin += count; } } template struct is_locale : std::false_type {}; template struct is_locale> : std::true_type {}; } // namespace detail FMT_MODULE_EXPORT_BEGIN // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use the ``memory_buffer`` type alias for ``char`` instead. **Example**:: auto out = fmt::memory_buffer(); format_to(std::back_inserter(out), "The answer is {}.", 42); This will append the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template > class basic_memory_buffer final : public detail::buffer { private: T store_[SIZE]; // Don't inherit from Allocator avoid generating type_info for it. Allocator alloc_; // Deallocate memory allocated by the buffer. FMT_CONSTEXPR20 void deallocate() { T* data = this->data(); if (data != store_) alloc_.deallocate(data, this->capacity()); } protected: FMT_CONSTEXPR20 void grow(size_t size) override; public: using value_type = T; using const_reference = const T&; FMT_CONSTEXPR20 explicit basic_memory_buffer( const Allocator& alloc = Allocator()) : alloc_(alloc) { this->set(store_, SIZE); if (detail::is_constant_evaluated()) { detail::fill_n(store_, SIZE, T{}); } } FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); } private: // Move data from other to this buffer. FMT_CONSTEXPR20 void move(basic_memory_buffer& other) { alloc_ = std::move(other.alloc_); T* data = other.data(); size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); if (detail::is_constant_evaluated()) { detail::copy_str(other.store_, other.store_ + size, detail::make_checked(store_, capacity)); } else { std::uninitialized_copy(other.store_, other.store_ + size, detail::make_checked(store_, capacity)); } } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ auto operator=(basic_memory_buffer&& other) FMT_NOEXCEPT -> basic_memory_buffer& { FMT_ASSERT(this != &other, ""); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. auto get_allocator() const -> Allocator { return alloc_; } /** Resizes the buffer to contain *count* elements. If T is a POD type new elements may not be initialized. */ FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); } /** Increases the buffer capacity to *new_capacity*. */ void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } // Directly append data into the buffer using detail::buffer::append; template void append(const ContiguousRange& range) { append(range.data(), range.data() + range.size()); } }; template FMT_CONSTEXPR20 void basic_memory_buffer::grow( size_t size) { #ifdef FMT_FUZZ if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much"); #endif const size_t max_size = std::allocator_traits::max_size(alloc_); size_t old_capacity = this->capacity(); size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; else if (new_capacity > max_size) new_capacity = size > max_size ? size : max_size; T* old_data = this->data(); T* new_data = std::allocator_traits::allocate(alloc_, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), detail::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) alloc_.deallocate(old_data, old_capacity); } using memory_buffer = basic_memory_buffer; template struct is_contiguous> : std::true_type { }; namespace detail { FMT_API void print(std::FILE*, string_view); } /** A formatting error such as invalid format string. */ FMT_CLASS_API class FMT_API format_error : public std::runtime_error { public: explicit format_error(const char* message) : std::runtime_error(message) {} explicit format_error(const std::string& message) : std::runtime_error(message) {} format_error(const format_error&) = default; format_error& operator=(const format_error&) = default; format_error(format_error&&) = default; format_error& operator=(format_error&&) = default; ~format_error() FMT_NOEXCEPT override FMT_MSC_DEFAULT; }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. If ``fmt`` is a compile-time string then `make_args_checked` checks its validity at compile time. \endrst */ template > FMT_INLINE auto make_args_checked(const S& fmt, const remove_reference_t&... args) -> format_arg_store, remove_reference_t...> { static_assert( detail::count<( std::is_base_of>::value && std::is_reference::value)...>() == 0, "passing views as lvalues is disallowed"); detail::check_format_string(fmt); return {args...}; } // compile-time support namespace detail_exported { #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS template struct fixed_string { constexpr fixed_string(const Char (&str)[N]) { detail::copy_str(static_cast(str), str + N, data); } Char data[N]{}; }; #endif // Converts a compile-time string to basic_string_view. template constexpr auto compile_string_to_view(const Char (&s)[N]) -> basic_string_view { // Remove trailing NUL character if needed. Won't be present if this is used // with a raw character array (i.e. not defined as a string). return {s, N - (std::char_traits::to_int_type(s[N - 1]) == 0 ? 1 : 0)}; } template constexpr auto compile_string_to_view(detail::std_string_view s) -> basic_string_view { return {s.data(), s.size()}; } } // namespace detail_exported FMT_BEGIN_DETAIL_NAMESPACE template struct is_integral : std::is_integral {}; template <> struct is_integral : std::true_type {}; template <> struct is_integral : std::true_type {}; template using is_signed = std::integral_constant::is_signed || std::is_same::value>; // Returns true if value is negative, false otherwise. // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. template ::value)> FMT_CONSTEXPR auto is_negative(T value) -> bool { return value < 0; } template ::value)> FMT_CONSTEXPR auto is_negative(T) -> bool { return false; } template ::value)> FMT_CONSTEXPR auto is_supported_floating_point(T) -> uint16_t { return (std::is_same::value && FMT_USE_FLOAT) || (std::is_same::value && FMT_USE_DOUBLE) || (std::is_same::value && FMT_USE_LONG_DOUBLE); } // Smallest of uint32_t, uint64_t, uint128_t that is large enough to // represent all values of an integral type T. template using uint32_or_64_or_128_t = conditional_t() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, uint32_t, conditional_t() <= 64, uint64_t, uint128_t>>; template using uint64_or_128_t = conditional_t() <= 64, uint64_t, uint128_t>; #define FMT_POWERS_OF_10(factor) \ factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ (factor)*1000000, (factor)*10000000, (factor)*100000000, \ (factor)*1000000000 // Converts value in the range [0, 100) to a string. constexpr const char* digits2(size_t value) { // GCC generates slightly better code when value is pointer-size. return &"0001020304050607080910111213141516171819" "2021222324252627282930313233343536373839" "4041424344454647484950515253545556575859" "6061626364656667686970717273747576777879" "8081828384858687888990919293949596979899"[value * 2]; } // Sign is a template parameter to workaround a bug in gcc 4.8. template constexpr Char sign(Sign s) { #if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604 static_assert(std::is_same::value, ""); #endif return static_cast("\0-+ "[s]); } template FMT_CONSTEXPR auto count_digits_fallback(T n) -> int { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #if FMT_USE_INT128 FMT_CONSTEXPR inline auto count_digits(uint128_t n) -> int { return count_digits_fallback(n); } #endif #ifdef FMT_BUILTIN_CLZLL // It is a separate function rather than a part of count_digits to workaround // the lack of static constexpr in constexpr functions. inline auto do_count_digits(uint64_t n) -> int { // This has comparable performance to the version by Kendall Willets // (https://github.com/fmtlib/format-benchmark/blob/master/digits10) // but uses smaller tables. // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). static constexpr uint8_t bsr2log10[] = { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63]; static constexpr const uint64_t zero_or_powers_of_10[] = { 0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; return t - (n < zero_or_powers_of_10[t]); } #endif // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int { #ifdef FMT_BUILTIN_CLZLL if (!is_constant_evaluated()) { return do_count_digits(n); } #endif return count_digits_fallback(n); } // Counts the number of digits in n. BITS = log2(radix). template FMT_CONSTEXPR auto count_digits(UInt n) -> int { #ifdef FMT_BUILTIN_CLZ if (num_bits() == 32) return (FMT_BUILTIN_CLZ(static_cast(n) | 1) ^ 31) / BITS + 1; #endif // Lambda avoids unreachable code warnings from NVHPC. return [](UInt m) { int num_digits = 0; do { ++num_digits; } while ((m >>= BITS) != 0); return num_digits; }(n); } template <> auto count_digits<4>(detail::fallback_uintptr n) -> int; #ifdef FMT_BUILTIN_CLZ // It is a separate function rather than a part of count_digits to workaround // the lack of static constexpr in constexpr functions. FMT_INLINE auto do_count_digits(uint32_t n) -> int { // An optimization by Kendall Willets from https://bit.ly/3uOIQrB. // This increments the upper 32 bits (log10(T) - 1) when >= T is added. # define FMT_INC(T) (((sizeof(# T) - 1ull) << 32) - T) static constexpr uint64_t table[] = { FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8 FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64 FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512 FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096 FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M FMT_INC(1000000000), FMT_INC(1000000000) // 4B }; auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31]; return static_cast((n + inc) >> 32); } #endif // Optional version of count_digits for better performance on 32-bit platforms. FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int { #ifdef FMT_BUILTIN_CLZ if (!is_constant_evaluated()) { return do_count_digits(n); } #endif return count_digits_fallback(n); } template constexpr auto digits10() FMT_NOEXCEPT -> int { return std::numeric_limits::digits10; } template <> constexpr auto digits10() FMT_NOEXCEPT -> int { return 38; } template <> constexpr auto digits10() FMT_NOEXCEPT -> int { return 38; } template struct thousands_sep_result { std::string grouping; Char thousands_sep; }; template FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result; template inline auto thousands_sep(locale_ref loc) -> thousands_sep_result { auto result = thousands_sep_impl(loc); return {result.grouping, Char(result.thousands_sep)}; } template <> inline auto thousands_sep(locale_ref loc) -> thousands_sep_result { return thousands_sep_impl(loc); } template FMT_API auto decimal_point_impl(locale_ref loc) -> Char; template inline auto decimal_point(locale_ref loc) -> Char { return Char(decimal_point_impl(loc)); } template <> inline auto decimal_point(locale_ref loc) -> wchar_t { return decimal_point_impl(loc); } // Compares two characters for equality. template auto equal2(const Char* lhs, const char* rhs) -> bool { return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]); } inline auto equal2(const char* lhs, const char* rhs) -> bool { return memcmp(lhs, rhs, 2) == 0; } // Copies two characters from src to dst. template FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) { if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) { memcpy(dst, src, 2); return; } *dst++ = static_cast(*src++); *dst = static_cast(*src); } template struct format_decimal_result { Iterator begin; Iterator end; }; // Formats a decimal unsigned integer value writing into out pointing to a // buffer of specified size. The caller must ensure that the buffer is large // enough. template FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size) -> format_decimal_result { FMT_ASSERT(size >= count_digits(value), "invalid digit count"); out += size; Char* end = out; while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. out -= 2; copy2(out, digits2(static_cast(value % 100))); value /= 100; } if (value < 10) { *--out = static_cast('0' + value); return {out, end}; } out -= 2; copy2(out, digits2(static_cast(value))); return {out, end}; } template >::value)> inline auto format_decimal(Iterator out, UInt value, int size) -> format_decimal_result { // Buffer is large enough to hold all digits (digits10 + 1). Char buffer[digits10() + 1]; auto end = format_decimal(buffer, value, size).end; return {out, detail::copy_str_noinline(buffer, end, out)}; } template FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits, bool upper = false) -> Char* { buffer += num_digits; Char* end = buffer; do { const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef"; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = static_cast(BASE_BITS < 4 ? static_cast('0' + digit) : digits[digit]); } while ((value >>= BASE_BITS) != 0); return end; } template auto format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits, bool = false) -> Char* { auto char_digits = std::numeric_limits::digits / 4; int start = (num_digits + char_digits - 1) / char_digits - 1; if (int start_digits = num_digits % char_digits) { unsigned value = n.value[start--]; buffer = format_uint(buffer, value, start_digits); } for (; start >= 0; --start) { unsigned value = n.value[start]; buffer += char_digits; auto p = buffer; for (int i = 0; i < char_digits; ++i) { unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--p = static_cast("0123456789abcdef"[digit]); value >>= BASE_BITS; } } return buffer; } template inline auto format_uint(It out, UInt value, int num_digits, bool upper = false) -> It { if (auto ptr = to_pointer(out, to_unsigned(num_digits))) { format_uint(ptr, value, num_digits, upper); return out; } // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). char buffer[num_bits() / BASE_BITS + 1]; format_uint(buffer, value, num_digits, upper); return detail::copy_str_noinline(buffer, buffer + num_digits, out); } // A converter from UTF-8 to UTF-16. class utf8_to_utf16 { private: basic_memory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator basic_string_view() const { return {&buffer_[0], size()}; } auto size() const -> size_t { return buffer_.size() - 1; } auto c_str() const -> const wchar_t* { return &buffer_[0]; } auto str() const -> std::wstring { return {&buffer_[0], size()}; } }; namespace dragonbox { // Type-specific information that Dragonbox uses. template struct float_info; template <> struct float_info { using carrier_uint = uint32_t; static const int significand_bits = 23; static const int exponent_bits = 8; static const int min_exponent = -126; static const int max_exponent = 127; static const int exponent_bias = -127; static const int decimal_digits = 9; static const int kappa = 1; static const int big_divisor = 100; static const int small_divisor = 10; static const int min_k = -31; static const int max_k = 46; static const int cache_bits = 64; static const int divisibility_check_by_5_threshold = 39; static const int case_fc_pm_half_lower_threshold = -1; static const int case_fc_pm_half_upper_threshold = 6; static const int case_fc_lower_threshold = -2; static const int case_fc_upper_threshold = 6; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -35; static const int shorter_interval_tie_upper_threshold = -35; static const int max_trailing_zeros = 7; }; template <> struct float_info { using carrier_uint = uint64_t; static const int significand_bits = 52; static const int exponent_bits = 11; static const int min_exponent = -1022; static const int max_exponent = 1023; static const int exponent_bias = -1023; static const int decimal_digits = 17; static const int kappa = 2; static const int big_divisor = 1000; static const int small_divisor = 100; static const int min_k = -292; static const int max_k = 326; static const int cache_bits = 128; static const int divisibility_check_by_5_threshold = 86; static const int case_fc_pm_half_lower_threshold = -2; static const int case_fc_pm_half_upper_threshold = 9; static const int case_fc_lower_threshold = -4; static const int case_fc_upper_threshold = 9; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -77; static const int shorter_interval_tie_upper_threshold = -77; static const int max_trailing_zeros = 16; }; template struct decimal_fp { using significand_type = typename float_info::carrier_uint; significand_type significand; int exponent; }; template FMT_API auto to_decimal(T x) FMT_NOEXCEPT -> decimal_fp; } // namespace dragonbox template constexpr auto exponent_mask() -> typename dragonbox::float_info::carrier_uint { using uint = typename dragonbox::float_info::carrier_uint; return ((uint(1) << dragonbox::float_info::exponent_bits) - 1) << dragonbox::float_info::significand_bits; } // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. template FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It { FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); if (exp < 0) { *it++ = static_cast('-'); exp = -exp; } else { *it++ = static_cast('+'); } if (exp >= 100) { const char* top = digits2(to_unsigned(exp / 100)); if (exp >= 1000) *it++ = static_cast(top[0]); *it++ = static_cast(top[1]); exp %= 100; } const char* d = digits2(to_unsigned(exp)); *it++ = static_cast(d[0]); *it++ = static_cast(d[1]); return it; } template FMT_HEADER_ONLY_CONSTEXPR20 auto format_float(T value, int precision, float_specs specs, buffer& buf) -> int; // Formats a floating-point number with snprintf. template auto snprintf_float(T value, int precision, float_specs specs, buffer& buf) -> int; template constexpr auto promote_float(T value) -> T { return value; } constexpr auto promote_float(float value) -> double { return static_cast(value); } template FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n, const fill_t& fill) -> OutputIt { auto fill_size = fill.size(); if (fill_size == 1) return detail::fill_n(it, n, fill[0]); auto data = fill.data(); for (size_t i = 0; i < n; ++i) it = copy_str(data, data + fill_size, it); return it; } // Writes the output of f, padded according to format specifications in specs. // size: output size in code units. // width: output display width in (terminal) column positions. template FMT_CONSTEXPR auto write_padded(OutputIt out, const basic_format_specs& specs, size_t size, size_t width, F&& f) -> OutputIt { static_assert(align == align::left || align == align::right, ""); unsigned spec_width = to_unsigned(specs.width); size_t padding = spec_width > width ? spec_width - width : 0; // Shifts are encoded as string literals because static constexpr is not // supported in constexpr functions. auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01"; size_t left_padding = padding >> shifts[specs.align]; size_t right_padding = padding - left_padding; auto it = reserve(out, size + padding * specs.fill.size()); if (left_padding != 0) it = fill(it, left_padding, specs.fill); it = f(it); if (right_padding != 0) it = fill(it, right_padding, specs.fill); return base_iterator(out, it); } template constexpr auto write_padded(OutputIt out, const basic_format_specs& specs, size_t size, F&& f) -> OutputIt { return write_padded(out, specs, size, size, f); } template FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes, const basic_format_specs& specs) -> OutputIt { return write_padded( out, specs, bytes.size(), [bytes](reserve_iterator it) { const char* data = bytes.data(); return copy_str(data, data + bytes.size(), it); }); } template auto write_ptr(OutputIt out, UIntPtr value, const basic_format_specs* specs) -> OutputIt { int num_digits = count_digits<4>(value); auto size = to_unsigned(num_digits) + size_t(2); auto write = [=](reserve_iterator it) { *it++ = static_cast('0'); *it++ = static_cast('x'); return format_uint<4, Char>(it, value, num_digits); }; return specs ? write_padded(out, *specs, size, write) : base_iterator(out, write(reserve(out, size))); } template FMT_CONSTEXPR auto write_char(OutputIt out, Char value, const basic_format_specs& specs) -> OutputIt { return write_padded(out, specs, 1, [=](reserve_iterator it) { *it++ = value; return it; }); } template FMT_CONSTEXPR auto write(OutputIt out, Char value, const basic_format_specs& specs, locale_ref loc = {}) -> OutputIt { return check_char_specs(specs) ? write_char(out, value, specs) : write(out, static_cast(value), specs, loc); } // Data for write_int that doesn't depend on output iterator type. It is used to // avoid template code bloat. template struct write_int_data { size_t size; size_t padding; FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix, const basic_format_specs& specs) : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) { if (specs.align == align::numeric) { auto width = to_unsigned(specs.width); if (width > size) { padding = width - size; size = width; } } else if (specs.precision > num_digits) { size = (prefix >> 24) + to_unsigned(specs.precision); padding = to_unsigned(specs.precision - num_digits); } } }; // Writes an integer in the format // // where are written by write_digits(it). // prefix contains chars in three lower bytes and the size in the fourth byte. template FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits, unsigned prefix, const basic_format_specs& specs, W write_digits) -> OutputIt { // Slightly faster check for specs.width == 0 && specs.precision == -1. if ((specs.width | (specs.precision + 1)) == 0) { auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24)); if (prefix != 0) { for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) *it++ = static_cast(p & 0xff); } return base_iterator(out, write_digits(it)); } auto data = write_int_data(num_digits, prefix, specs); return write_padded( out, specs, data.size, [=](reserve_iterator it) { for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) *it++ = static_cast(p & 0xff); it = detail::fill_n(it, data.padding, static_cast('0')); return write_digits(it); }); } template class digit_grouping { private: thousands_sep_result sep_; struct next_state { std::string::const_iterator group; int pos; }; next_state initial_state() const { return {sep_.grouping.begin(), 0}; } // Returns the next digit group separator position. int next(next_state& state) const { if (!sep_.thousands_sep) return max_value(); if (state.group == sep_.grouping.end()) return state.pos += sep_.grouping.back(); if (*state.group <= 0 || *state.group == max_value()) return max_value(); state.pos += *state.group++; return state.pos; } public: explicit digit_grouping(locale_ref loc, bool localized = true) { if (localized) sep_ = thousands_sep(loc); else sep_.thousands_sep = Char(); } explicit digit_grouping(thousands_sep_result sep) : sep_(sep) {} Char separator() const { return sep_.thousands_sep; } int count_separators(int num_digits) const { int count = 0; auto state = initial_state(); while (num_digits > next(state)) ++count; return count; } // Applies grouping to digits and write the output to out. template Out apply(Out out, basic_string_view digits) const { auto num_digits = static_cast(digits.size()); auto separators = basic_memory_buffer(); separators.push_back(0); auto state = initial_state(); while (int i = next(state)) { if (i >= num_digits) break; separators.push_back(i); } for (int i = 0, sep_index = static_cast(separators.size() - 1); i < num_digits; ++i) { if (num_digits - i == separators[sep_index]) { *out++ = separator(); --sep_index; } *out++ = static_cast(digits[to_unsigned(i)]); } return out; } }; template auto write_int_localized(OutputIt out, UInt value, unsigned prefix, const basic_format_specs& specs, const digit_grouping& grouping) -> OutputIt { static_assert(std::is_same, UInt>::value, ""); int num_digits = count_digits(value); char digits[40]; format_decimal(digits, value, num_digits); unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits + grouping.count_separators(num_digits)); return write_padded( out, specs, size, size, [&](reserve_iterator it) { if (prefix != 0) *it++ = static_cast(prefix); return grouping.apply(it, string_view(digits, to_unsigned(num_digits))); }); } template auto write_int_localized(OutputIt& out, UInt value, unsigned prefix, const basic_format_specs& specs, locale_ref loc) -> bool { auto grouping = digit_grouping(loc); out = write_int_localized(out, value, prefix, specs, grouping); return true; } FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) { prefix |= prefix != 0 ? value << 8 : value; prefix += (1u + (value > 0xff ? 1 : 0)) << 24; } template struct write_int_arg { UInt abs_value; unsigned prefix; }; template FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign) -> write_int_arg> { auto prefix = 0u; auto abs_value = static_cast>(value); if (is_negative(value)) { prefix = 0x01000000 | '-'; abs_value = 0 - abs_value; } else { constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+', 0x1000000u | ' '}; prefix = prefixes[sign]; } return {abs_value, prefix}; } template FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg arg, const basic_format_specs& specs, locale_ref loc) -> OutputIt { static_assert(std::is_same>::value, ""); auto abs_value = arg.abs_value; auto prefix = arg.prefix; switch (specs.type) { case presentation_type::none: case presentation_type::dec: { if (specs.localized && write_int_localized(out, static_cast>(abs_value), prefix, specs, loc)) { return out; } auto num_digits = count_digits(abs_value); return write_int( out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_decimal(it, abs_value, num_digits).end; }); } case presentation_type::hex_lower: case presentation_type::hex_upper: { bool upper = specs.type == presentation_type::hex_upper; if (specs.alt) prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0'); int num_digits = count_digits<4>(abs_value); return write_int( out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_uint<4, Char>(it, abs_value, num_digits, upper); }); } case presentation_type::bin_lower: case presentation_type::bin_upper: { bool upper = specs.type == presentation_type::bin_upper; if (specs.alt) prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0'); int num_digits = count_digits<1>(abs_value); return write_int(out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_uint<1, Char>(it, abs_value, num_digits); }); } case presentation_type::oct: { int num_digits = count_digits<3>(abs_value); // Octal prefix '0' is counted as a digit, so only add it if precision // is not greater than the number of digits. if (specs.alt && specs.precision <= num_digits && abs_value != 0) prefix_append(prefix, '0'); return write_int(out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_uint<3, Char>(it, abs_value, num_digits); }); } case presentation_type::chr: return write_char(out, static_cast(abs_value), specs); default: throw_format_error("invalid type specifier"); } return out; } template FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline( OutputIt out, write_int_arg arg, const basic_format_specs& specs, locale_ref loc) -> OutputIt { return write_int(out, arg, specs, loc); } template ::value && !std::is_same::value && std::is_same>::value)> FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, const basic_format_specs& specs, locale_ref loc) -> OutputIt { return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs, loc); } // An inlined version of write used in format string compilation. template ::value && !std::is_same::value && !std::is_same>::value)> FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, const basic_format_specs& specs, locale_ref loc) -> OutputIt { return write_int(out, make_write_int_arg(value, specs.sign), specs, loc); } template FMT_CONSTEXPR auto write(OutputIt out, basic_string_view s, const basic_format_specs& specs) -> OutputIt { auto data = s.data(); auto size = s.size(); if (specs.precision >= 0 && to_unsigned(specs.precision) < size) size = code_point_index(s, to_unsigned(specs.precision)); auto width = specs.width != 0 ? compute_width(basic_string_view(data, size)) : 0; return write_padded(out, specs, size, width, [=](reserve_iterator it) { return copy_str(data, data + size, it); }); } template FMT_CONSTEXPR auto write(OutputIt out, basic_string_view> s, const basic_format_specs& specs, locale_ref) -> OutputIt { check_string_type_spec(specs.type); return write(out, s, specs); } template FMT_CONSTEXPR auto write(OutputIt out, const Char* s, const basic_format_specs& specs, locale_ref) -> OutputIt { return check_cstring_type_spec(specs.type) ? write(out, basic_string_view(s), specs, {}) : write_ptr(out, to_uintptr(s), &specs); } template FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isinf, basic_format_specs specs, const float_specs& fspecs) -> OutputIt { auto str = isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan"); constexpr size_t str_size = 3; auto sign = fspecs.sign; auto size = str_size + (sign ? 1 : 0); // Replace '0'-padding with space for non-finite values. const bool is_zero_fill = specs.fill.size() == 1 && *specs.fill.data() == static_cast('0'); if (is_zero_fill) specs.fill[0] = static_cast(' '); return write_padded(out, specs, size, [=](reserve_iterator it) { if (sign) *it++ = detail::sign(sign); return copy_str(str, str + str_size, it); }); } // A decimal floating-point number significand * pow(10, exp). struct big_decimal_fp { const char* significand; int significand_size; int exponent; }; constexpr auto get_significand_size(const big_decimal_fp& fp) -> int { return fp.significand_size; } template inline auto get_significand_size(const dragonbox::decimal_fp& fp) -> int { return count_digits(fp.significand); } template constexpr auto write_significand(OutputIt out, const char* significand, int significand_size) -> OutputIt { return copy_str(significand, significand + significand_size, out); } template inline auto write_significand(OutputIt out, UInt significand, int significand_size) -> OutputIt { return format_decimal(out, significand, significand_size).end; } template FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, int significand_size, int exponent, const Grouping& grouping) -> OutputIt { if (!grouping.separator()) { out = write_significand(out, significand, significand_size); return detail::fill_n(out, exponent, static_cast('0')); } auto buffer = memory_buffer(); write_significand(appender(buffer), significand, significand_size); detail::fill_n(appender(buffer), exponent, '0'); return grouping.apply(out, string_view(buffer.data(), buffer.size())); } template ::value)> inline auto write_significand(Char* out, UInt significand, int significand_size, int integral_size, Char decimal_point) -> Char* { if (!decimal_point) return format_decimal(out, significand, significand_size).end; out += significand_size + 1; Char* end = out; int floating_size = significand_size - integral_size; for (int i = floating_size / 2; i > 0; --i) { out -= 2; copy2(out, digits2(significand % 100)); significand /= 100; } if (floating_size % 2 != 0) { *--out = static_cast('0' + significand % 10); significand /= 10; } *--out = decimal_point; format_decimal(out - integral_size, significand, integral_size); return end; } template >::value)> inline auto write_significand(OutputIt out, UInt significand, int significand_size, int integral_size, Char decimal_point) -> OutputIt { // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. Char buffer[digits10() + 2]; auto end = write_significand(buffer, significand, significand_size, integral_size, decimal_point); return detail::copy_str_noinline(buffer, end, out); } template FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand, int significand_size, int integral_size, Char decimal_point) -> OutputIt { out = detail::copy_str_noinline(significand, significand + integral_size, out); if (!decimal_point) return out; *out++ = decimal_point; return detail::copy_str_noinline(significand + integral_size, significand + significand_size, out); } template FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, int significand_size, int integral_size, Char decimal_point, const Grouping& grouping) -> OutputIt { if (!grouping.separator()) { return write_significand(out, significand, significand_size, integral_size, decimal_point); } auto buffer = basic_memory_buffer(); write_significand(buffer_appender(buffer), significand, significand_size, integral_size, decimal_point); grouping.apply( out, basic_string_view(buffer.data(), to_unsigned(integral_size))); return detail::copy_str_noinline(buffer.data() + integral_size, buffer.end(), out); } template > FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& fp, const basic_format_specs& specs, float_specs fspecs, locale_ref loc) -> OutputIt { auto significand = fp.significand; int significand_size = get_significand_size(fp); constexpr Char zero = static_cast('0'); auto sign = fspecs.sign; size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); using iterator = reserve_iterator; Char decimal_point = fspecs.locale ? detail::decimal_point(loc) : static_cast('.'); int output_exp = fp.exponent + significand_size - 1; auto use_exp_format = [=]() { if (fspecs.format == float_format::exp) return true; if (fspecs.format != float_format::general) return false; // Use the fixed notation if the exponent is in [exp_lower, exp_upper), // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. const int exp_lower = -4, exp_upper = 16; return output_exp < exp_lower || output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); }; if (use_exp_format()) { int num_zeros = 0; if (fspecs.showpoint) { num_zeros = fspecs.precision - significand_size; if (num_zeros < 0) num_zeros = 0; size += to_unsigned(num_zeros); } else if (significand_size == 1) { decimal_point = Char(); } auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; int exp_digits = 2; if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); char exp_char = fspecs.upper ? 'E' : 'e'; auto write = [=](iterator it) { if (sign) *it++ = detail::sign(sign); // Insert a decimal point after the first digit and add an exponent. it = write_significand(it, significand, significand_size, 1, decimal_point); if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); *it++ = static_cast(exp_char); return write_exponent(output_exp, it); }; return specs.width > 0 ? write_padded(out, specs, size, write) : base_iterator(out, write(reserve(out, size))); } int exp = fp.exponent + significand_size; if (fp.exponent >= 0) { // 1234e5 -> 123400000[.0+] size += to_unsigned(fp.exponent); int num_zeros = fspecs.precision - exp; #ifdef FMT_FUZZ if (num_zeros > 5000) throw std::runtime_error("fuzz mode - avoiding excessive cpu use"); #endif if (fspecs.showpoint) { if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1; if (num_zeros > 0) size += to_unsigned(num_zeros) + 1; } auto grouping = Grouping(loc, fspecs.locale); size += to_unsigned(grouping.count_separators(significand_size)); return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = detail::sign(sign); it = write_significand(it, significand, significand_size, fp.exponent, grouping); if (!fspecs.showpoint) return it; *it++ = decimal_point; return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } else if (exp > 0) { // 1234e-2 -> 12.34[0+] int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); auto grouping = Grouping(loc, fspecs.locale); size += to_unsigned(grouping.count_separators(significand_size)); return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = detail::sign(sign); it = write_significand(it, significand, significand_size, exp, decimal_point, grouping); return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } // 1234e-6 -> 0.001234 int num_zeros = -exp; if (significand_size == 0 && fspecs.precision >= 0 && fspecs.precision < num_zeros) { num_zeros = fspecs.precision; } bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = detail::sign(sign); *it++ = zero; if (!pointy) return it; *it++ = decimal_point; it = detail::fill_n(it, num_zeros, zero); return write_significand(it, significand, significand_size); }); } template class fallback_digit_grouping { public: constexpr fallback_digit_grouping(locale_ref, bool) {} constexpr Char separator() const { return Char(); } constexpr int count_separators(int) const { return 0; } template constexpr Out apply(Out out, basic_string_view) const { return out; } }; template FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& fp, const basic_format_specs& specs, float_specs fspecs, locale_ref loc) -> OutputIt { if (is_constant_evaluated()) { return do_write_float>(out, fp, specs, fspecs, loc); } else { return do_write_float(out, fp, specs, fspecs, loc); } } template ::value)> FMT_CONSTEXPR20 bool isinf(T value) { if (is_constant_evaluated()) { #if defined(__cpp_if_constexpr) if constexpr (std::numeric_limits::is_iec559) { auto bits = detail::bit_cast(static_cast(value)); constexpr auto significand_bits = dragonbox::float_info::significand_bits; return (bits & exponent_mask()) && !(bits & ((uint64_t(1) << significand_bits) - 1)); } #endif } return std::isinf(value); } template ::value)> FMT_CONSTEXPR20 bool isfinite(T value) { if (is_constant_evaluated()) { #if defined(__cpp_if_constexpr) if constexpr (std::numeric_limits::is_iec559) { auto bits = detail::bit_cast(static_cast(value)); return (bits & exponent_mask()) != exponent_mask(); } #endif } return std::isfinite(value); } template ::value)> FMT_INLINE FMT_CONSTEXPR bool signbit(T value) { if (is_constant_evaluated()) { #ifdef __cpp_if_constexpr if constexpr (std::numeric_limits::is_iec559) { auto bits = detail::bit_cast(static_cast(value)); return (bits & (uint64_t(1) << (num_bits() - 1))) != 0; } #endif } return std::signbit(value); } template ::value)> FMT_CONSTEXPR20 auto write(OutputIt out, T value, basic_format_specs specs, locale_ref loc = {}) -> OutputIt { if (const_check(!is_supported_floating_point(value))) return out; float_specs fspecs = parse_float_type_spec(specs); fspecs.sign = specs.sign; if (detail::signbit(value)) { // value < 0 is false for NaN so use signbit. fspecs.sign = sign::minus; value = -value; } else if (fspecs.sign == sign::minus) { fspecs.sign = sign::none; } if (!detail::isfinite(value)) return write_nonfinite(out, detail::isinf(value), specs, fspecs); if (specs.align == align::numeric && fspecs.sign) { auto it = reserve(out, 1); *it++ = detail::sign(fspecs.sign); out = base_iterator(out, it); fspecs.sign = sign::none; if (specs.width != 0) --specs.width; } memory_buffer buffer; if (fspecs.format == float_format::hex) { if (fspecs.sign) buffer.push_back(detail::sign(fspecs.sign)); snprintf_float(promote_float(value), specs.precision, fspecs, buffer); return write_bytes(out, {buffer.data(), buffer.size()}, specs); } int precision = specs.precision >= 0 || specs.type == presentation_type::none ? specs.precision : 6; if (fspecs.format == float_format::exp) { if (precision == max_value()) throw_format_error("number is too big"); else ++precision; } if (const_check(std::is_same())) fspecs.binary32 = true; if (!is_fast_float()) fspecs.fallback = true; int exp = format_float(promote_float(value), precision, fspecs, buffer); fspecs.precision = precision; auto fp = big_decimal_fp{buffer.data(), static_cast(buffer.size()), exp}; return write_float(out, fp, specs, fspecs, loc); } template ::value)> FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt { if (is_constant_evaluated()) { return write(out, value, basic_format_specs()); } if (const_check(!is_supported_floating_point(value))) return out; using floaty = conditional_t::value, double, T>; using uint = typename dragonbox::float_info::carrier_uint; auto bits = bit_cast(value); auto fspecs = float_specs(); if (detail::signbit(value)) { fspecs.sign = sign::minus; value = -value; } constexpr auto specs = basic_format_specs(); uint mask = exponent_mask(); if ((bits & mask) == mask) return write_nonfinite(out, std::isinf(value), specs, fspecs); auto dec = dragonbox::to_decimal(static_cast(value)); return write_float(out, dec, specs, fspecs, {}); } template ::value && !is_fast_float::value)> inline auto write(OutputIt out, T value) -> OutputIt { return write(out, value, basic_format_specs()); } template auto write(OutputIt out, monostate, basic_format_specs = {}, locale_ref = {}) -> OutputIt { FMT_ASSERT(false, ""); return out; } template FMT_CONSTEXPR auto write(OutputIt out, basic_string_view value) -> OutputIt { auto it = reserve(out, value.size()); it = copy_str_noinline(value.begin(), value.end(), it); return base_iterator(out, it); } template ::value)> constexpr auto write(OutputIt out, const T& value) -> OutputIt { return write(out, to_string_view(value)); } template ::value && !std::is_same::value && !std::is_same::value)> FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { auto abs_value = static_cast>(value); bool negative = is_negative(value); // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. if (negative) abs_value = ~abs_value + 1; int num_digits = count_digits(abs_value); auto size = (negative ? 1 : 0) + static_cast(num_digits); auto it = reserve(out, size); if (auto ptr = to_pointer(it, size)) { if (negative) *ptr++ = static_cast('-'); format_decimal(ptr, abs_value, num_digits); return out; } if (negative) *it++ = static_cast('-'); it = format_decimal(it, abs_value, num_digits).end; return base_iterator(out, it); } // FMT_ENABLE_IF() condition separated to workaround an MSVC bug. template < typename Char, typename OutputIt, typename T, bool check = std::is_enum::value && !std::is_same::value && mapped_type_constant>::value != type::custom_type, FMT_ENABLE_IF(check)> FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { return write( out, static_cast::type>(value)); } template ::value)> FMT_CONSTEXPR auto write(OutputIt out, T value, const basic_format_specs& specs = {}, locale_ref = {}) -> OutputIt { return specs.type != presentation_type::none && specs.type != presentation_type::string ? write(out, value ? 1 : 0, specs, {}) : write_bytes(out, value ? "true" : "false", specs); } template FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt { auto it = reserve(out, 1); *it++ = value; return base_iterator(out, it); } template FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value) -> OutputIt { if (!value) { throw_format_error("string pointer is null"); } else { out = write(out, basic_string_view(value)); } return out; } template ::value)> auto write(OutputIt out, const T* value, const basic_format_specs& specs = {}, locale_ref = {}) -> OutputIt { check_pointer_type_spec(specs.type, error_handler()); return write_ptr(out, to_uintptr(value), &specs); } // A write overload that handles implicit conversions. template > FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t< std::is_class::value && !is_string::value && !std::is_same::value && !std::is_same().map(value))>::value, OutputIt> { return write(out, arg_mapper().map(value)); } template > FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t::value == type::custom_type, OutputIt> { using formatter_type = conditional_t::value, typename Context::template formatter_type, fallback_formatter>; auto ctx = Context(out, {}, {}); return formatter_type().format(value, ctx); } // An argument visitor that formats the argument and writes it via the output // iterator. It's a class and not a generic lambda for compatibility with C++11. template struct default_arg_formatter { using iterator = buffer_appender; using context = buffer_context; iterator out; basic_format_args args; locale_ref loc; template auto operator()(T value) -> iterator { return write(out, value); } auto operator()(typename basic_format_arg::handle h) -> iterator { basic_format_parse_context parse_ctx({}); context format_ctx(out, args, loc); h.format(parse_ctx, format_ctx); return format_ctx.out(); } }; template struct arg_formatter { using iterator = buffer_appender; using context = buffer_context; iterator out; const basic_format_specs& specs; locale_ref locale; template FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator { return detail::write(out, value, specs, locale); } auto operator()(typename basic_format_arg::handle) -> iterator { // User-defined types are handled separately because they require access // to the parse context. return out; } }; template struct custom_formatter { basic_format_parse_context& parse_ctx; buffer_context& ctx; void operator()( typename basic_format_arg>::handle h) const { h.format(parse_ctx, ctx); } template void operator()(T) const {} }; template using is_integer = bool_constant::value && !std::is_same::value && !std::is_same::value && !std::is_same::value>; template class width_checker { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { if (is_negative(value)) handler_.on_error("negative width"); return static_cast(value); } template ::value)> FMT_CONSTEXPR auto operator()(T) -> unsigned long long { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler& handler_; }; template class precision_checker { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast(value); } template ::value)> FMT_CONSTEXPR auto operator()(T) -> unsigned long long { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler& handler_; }; template