// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // For generalized bi-partite Jacobian matrices that arise in // Structure from Motion related problems, it is sometimes useful to // have access to the two parts of the matrix as linear operators // themselves. This class provides that functionality. #ifndef CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ #define CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ #include "ceres/block_sparse_matrix.h" namespace ceres { namespace internal { // Given generalized bi-partite matrix A = [E F], with the same block // structure as required by the Schur complement based solver, found // in explicit_schur_complement_solver.h, provide access to the // matrices E and F and their outer products E'E and F'F with // themselves. // // Lack of BlockStructure object will result in a crash and if the // block structure of the matrix does not satisfy the requirements of // the Schur complement solver it will result in unpredictable and // wrong output. // // This class lives in the internal name space as its a utility class // to be used by the IterativeSchurComplementSolver class, found in // iterative_schur_complement_solver.h, and is not meant for general // consumption. class PartitionedMatrixView { public: // matrix = [E F], where the matrix E contains the first // num_col_blocks_a column blocks. PartitionedMatrixView(const BlockSparseMatrix& matrix, int num_col_blocks_a); ~PartitionedMatrixView(); // y += E'x void LeftMultiplyE(const double* x, double* y) const; // y += F'x void LeftMultiplyF(const double* x, double* y) const; // y += Ex void RightMultiplyE(const double* x, double* y) const; // y += Fx void RightMultiplyF(const double* x, double* y) const; // Create and return the block diagonal of the matrix E'E. BlockSparseMatrix* CreateBlockDiagonalEtE() const; // Create and return the block diagonal of the matrix F'F. BlockSparseMatrix* CreateBlockDiagonalFtF() const; // Compute the block diagonal of the matrix E'E and store it in // block_diagonal. The matrix block_diagonal is expected to have a // BlockStructure (preferably created using // CreateBlockDiagonalMatrixEtE) which is has the same structure as // the block diagonal of E'E. void UpdateBlockDiagonalEtE(BlockSparseMatrix* block_diagonal) const; // Compute the block diagonal of the matrix F'F and store it in // block_diagonal. The matrix block_diagonal is expected to have a // BlockStructure (preferably created using // CreateBlockDiagonalMatrixFtF) which is has the same structure as // the block diagonal of F'F. void UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const; int num_col_blocks_e() const { return num_col_blocks_e_; } int num_col_blocks_f() const { return num_col_blocks_f_; } int num_cols_e() const { return num_cols_e_; } int num_cols_f() const { return num_cols_f_; } int num_rows() const { return matrix_.num_rows(); } int num_cols() const { return matrix_.num_cols(); } private: BlockSparseMatrix* CreateBlockDiagonalMatrixLayout(int start_col_block, int end_col_block) const; const BlockSparseMatrix& matrix_; int num_row_blocks_e_; int num_col_blocks_e_; int num_col_blocks_f_; int num_cols_e_; int num_cols_f_; }; } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_