// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #define _USE_MATH_DEFINES #include #include #include #include #include "Recast.h" #include "RecastAlloc.h" #include "RecastAssert.h" static const unsigned RC_UNSET_HEIGHT = 0xffff; struct rcHeightPatch { inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {} inline ~rcHeightPatch() { rcFree(data); } unsigned short* data; int xmin, ymin, width, height; }; inline float vdot2(const float* a, const float* b) { return a[0]*b[0] + a[2]*b[2]; } inline float vdistSq2(const float* p, const float* q) { const float dx = q[0] - p[0]; const float dy = q[2] - p[2]; return dx*dx + dy*dy; } inline float vdist2(const float* p, const float* q) { return sqrtf(vdistSq2(p,q)); } inline float vcross2(const float* p1, const float* p2, const float* p3) { const float u1 = p2[0] - p1[0]; const float v1 = p2[2] - p1[2]; const float u2 = p3[0] - p1[0]; const float v2 = p3[2] - p1[2]; return u1 * v2 - v1 * u2; } static bool circumCircle(const float* p1, const float* p2, const float* p3, float* c, float& r) { static const float EPS = 1e-6f; const float cp = vcross2(p1, p2, p3); if (fabsf(cp) > EPS) { const float p1Sq = vdot2(p1,p1); const float p2Sq = vdot2(p2,p2); const float p3Sq = vdot2(p3,p3); c[0] = (p1Sq*(p2[2]-p3[2]) + p2Sq*(p3[2]-p1[2]) + p3Sq*(p1[2]-p2[2])) / (2*cp); c[2] = (p1Sq*(p3[0]-p2[0]) + p2Sq*(p1[0]-p3[0]) + p3Sq*(p2[0]-p1[0])) / (2*cp); r = vdist2(c, p1); return true; } c[0] = p1[0]; c[2] = p1[2]; r = 0; return false; } static float distPtTri(const float* p, const float* a, const float* b, const float* c) { float v0[3], v1[3], v2[3]; rcVsub(v0, c,a); rcVsub(v1, b,a); rcVsub(v2, p,a); const float dot00 = vdot2(v0, v0); const float dot01 = vdot2(v0, v1); const float dot02 = vdot2(v0, v2); const float dot11 = vdot2(v1, v1); const float dot12 = vdot2(v1, v2); // Compute barycentric coordinates const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); const float u = (dot11 * dot02 - dot01 * dot12) * invDenom; float v = (dot00 * dot12 - dot01 * dot02) * invDenom; // If point lies inside the triangle, return interpolated y-coord. static const float EPS = 1e-4f; if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS) { const float y = a[1] + v0[1]*u + v1[1]*v; return fabsf(y-p[1]); } return FLT_MAX; } static float distancePtSeg(const float* pt, const float* p, const float* q) { float pqx = q[0] - p[0]; float pqy = q[1] - p[1]; float pqz = q[2] - p[2]; float dx = pt[0] - p[0]; float dy = pt[1] - p[1]; float dz = pt[2] - p[2]; float d = pqx*pqx + pqy*pqy + pqz*pqz; float t = pqx*dx + pqy*dy + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = p[0] + t*pqx - pt[0]; dy = p[1] + t*pqy - pt[1]; dz = p[2] + t*pqz - pt[2]; return dx*dx + dy*dy + dz*dz; } static float distancePtSeg2d(const float* pt, const float* p, const float* q) { float pqx = q[0] - p[0]; float pqz = q[2] - p[2]; float dx = pt[0] - p[0]; float dz = pt[2] - p[2]; float d = pqx*pqx + pqz*pqz; float t = pqx*dx + pqz*dz; if (d > 0) t /= d; if (t < 0) t = 0; else if (t > 1) t = 1; dx = p[0] + t*pqx - pt[0]; dz = p[2] + t*pqz - pt[2]; return dx*dx + dz*dz; } static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris) { float dmin = FLT_MAX; for (int i = 0; i < ntris; ++i) { const float* va = &verts[tris[i*4+0]*3]; const float* vb = &verts[tris[i*4+1]*3]; const float* vc = &verts[tris[i*4+2]*3]; float d = distPtTri(p, va,vb,vc); if (d < dmin) dmin = d; } if (dmin == FLT_MAX) return -1; return dmin; } static float distToPoly(int nvert, const float* verts, const float* p) { float dmin = FLT_MAX; int i, j, c = 0; for (i = 0, j = nvert-1; i < nvert; j = i++) { const float* vi = &verts[i*3]; const float* vj = &verts[j*3]; if (((vi[2] > p[2]) != (vj[2] > p[2])) && (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) c = !c; dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi)); } return c ? -dmin : dmin; } static unsigned short getHeight(const float fx, const float fy, const float fz, const float /*cs*/, const float ics, const float ch, const rcHeightPatch& hp) { int ix = (int)floorf(fx*ics + 0.01f); int iz = (int)floorf(fz*ics + 0.01f); ix = rcClamp(ix-hp.xmin, 0, hp.width); iz = rcClamp(iz-hp.ymin, 0, hp.height); unsigned short h = hp.data[ix+iz*hp.width]; if (h == RC_UNSET_HEIGHT) { // Special case when data might be bad. // Find nearest neighbour pixel which has valid height. const int off[8*2] = { -1,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1}; float dmin = FLT_MAX; for (int i = 0; i < 8; ++i) { const int nx = ix+off[i*2+0]; const int nz = iz+off[i*2+1]; if (nx < 0 || nz < 0 || nx >= hp.width || nz >= hp.height) continue; const unsigned short nh = hp.data[nx+nz*hp.width]; if (nh == RC_UNSET_HEIGHT) continue; const float d = fabsf(nh*ch - fy); if (d < dmin) { h = nh; dmin = d; } /* const float dx = (nx+0.5f)*cs - fx; const float dz = (nz+0.5f)*cs - fz; const float d = dx*dx+dz*dz; if (d < dmin) { h = nh; dmin = d; } */ } } return h; } enum EdgeValues { UNDEF = -1, HULL = -2, }; static int findEdge(const int* edges, int nedges, int s, int t) { for (int i = 0; i < nedges; i++) { const int* e = &edges[i*4]; if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s)) return i; } return UNDEF; } static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r) { if (nedges >= maxEdges) { ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges); return UNDEF; } // Add edge if not already in the triangulation. int e = findEdge(edges, nedges, s, t); if (e == UNDEF) { int* e = &edges[nedges*4]; e[0] = s; e[1] = t; e[2] = l; e[3] = r; return nedges++; } else { return UNDEF; } } static void updateLeftFace(int* e, int s, int t, int f) { if (e[0] == s && e[1] == t && e[2] == UNDEF) e[2] = f; else if (e[1] == s && e[0] == t && e[3] == UNDEF) e[3] = f; } static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d) { const float a1 = vcross2(a, b, d); const float a2 = vcross2(a, b, c); if (a1*a2 < 0.0f) { float a3 = vcross2(c, d, a); float a4 = a3 + a2 - a1; if (a3 * a4 < 0.0f) return 1; } return 0; } static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1) { for (int i = 0; i < nedges; ++i) { const int s0 = edges[i*4+0]; const int t0 = edges[i*4+1]; // Same or connected edges do not overlap. if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1) continue; if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3])) return true; } return false; } static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e) { static const float EPS = 1e-5f; int* edge = &edges[e*4]; // Cache s and t. int s,t; if (edge[2] == UNDEF) { s = edge[0]; t = edge[1]; } else if (edge[3] == UNDEF) { s = edge[1]; t = edge[0]; } else { // Edge already completed. return; } // Find best point on left of edge. int pt = npts; float c[3] = {0,0,0}; float r = -1; for (int u = 0; u < npts; ++u) { if (u == s || u == t) continue; if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS) { if (r < 0) { // The circle is not updated yet, do it now. pt = u; circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); continue; } const float d = vdist2(c, &pts[u*3]); const float tol = 0.001f; if (d > r*(1+tol)) { // Outside current circumcircle, skip. continue; } else if (d < r*(1-tol)) { // Inside safe circumcircle, update circle. pt = u; circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); } else { // Inside epsilon circum circle, do extra tests to make sure the edge is valid. // s-u and t-u cannot overlap with s-pt nor t-pt if they exists. if (overlapEdges(pts, edges, nedges, s,u)) continue; if (overlapEdges(pts, edges, nedges, t,u)) continue; // Edge is valid. pt = u; circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); } } } // Add new triangle or update edge info if s-t is on hull. if (pt < npts) { // Update face information of edge being completed. updateLeftFace(&edges[e*4], s, t, nfaces); // Add new edge or update face info of old edge. e = findEdge(edges, nedges, pt, s); if (e == UNDEF) addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, UNDEF); else updateLeftFace(&edges[e*4], pt, s, nfaces); // Add new edge or update face info of old edge. e = findEdge(edges, nedges, t, pt); if (e == UNDEF) addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, UNDEF); else updateLeftFace(&edges[e*4], t, pt, nfaces); nfaces++; } else { updateLeftFace(&edges[e*4], s, t, HULL); } } static void delaunayHull(rcContext* ctx, const int npts, const float* pts, const int nhull, const int* hull, rcIntArray& tris, rcIntArray& edges) { int nfaces = 0; int nedges = 0; const int maxEdges = npts*10; edges.resize(maxEdges*4); for (int i = 0, j = nhull-1; i < nhull; j=i++) addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], HULL, UNDEF); int currentEdge = 0; while (currentEdge < nedges) { if (edges[currentEdge*4+2] == UNDEF) completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); if (edges[currentEdge*4+3] == UNDEF) completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); currentEdge++; } // Create tris tris.resize(nfaces*4); for (int i = 0; i < nfaces*4; ++i) tris[i] = -1; for (int i = 0; i < nedges; ++i) { const int* e = &edges[i*4]; if (e[3] >= 0) { // Left face int* t = &tris[e[3]*4]; if (t[0] == -1) { t[0] = e[0]; t[1] = e[1]; } else if (t[0] == e[1]) t[2] = e[0]; else if (t[1] == e[0]) t[2] = e[1]; } if (e[2] >= 0) { // Right int* t = &tris[e[2]*4]; if (t[0] == -1) { t[0] = e[1]; t[1] = e[0]; } else if (t[0] == e[0]) t[2] = e[1]; else if (t[1] == e[1]) t[2] = e[0]; } } for (int i = 0; i < tris.size()/4; ++i) { int* t = &tris[i*4]; if (t[0] == -1 || t[1] == -1 || t[2] == -1) { ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]); t[0] = tris[tris.size()-4]; t[1] = tris[tris.size()-3]; t[2] = tris[tris.size()-2]; t[3] = tris[tris.size()-1]; tris.resize(tris.size()-4); --i; } } } inline float getJitterX(const int i) { return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f; } inline float getJitterY(const int i) { return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f; } static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin, const float sampleDist, const float sampleMaxError, const rcCompactHeightfield& chf, const rcHeightPatch& hp, float* verts, int& nverts, rcIntArray& tris, rcIntArray& edges, rcIntArray& samples) { static const int MAX_VERTS = 127; static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts). static const int MAX_VERTS_PER_EDGE = 32; float edge[(MAX_VERTS_PER_EDGE+1)*3]; int hull[MAX_VERTS]; int nhull = 0; nverts = 0; for (int i = 0; i < nin; ++i) rcVcopy(&verts[i*3], &in[i*3]); nverts = nin; const float cs = chf.cs; const float ics = 1.0f/cs; // Tessellate outlines. // This is done in separate pass in order to ensure // seamless height values across the ply boundaries. if (sampleDist > 0) { for (int i = 0, j = nin-1; i < nin; j=i++) { const float* vj = &in[j*3]; const float* vi = &in[i*3]; bool swapped = false; // Make sure the segments are always handled in same order // using lexological sort or else there will be seams. if (fabsf(vj[0]-vi[0]) < 1e-6f) { if (vj[2] > vi[2]) { rcSwap(vj,vi); swapped = true; } } else { if (vj[0] > vi[0]) { rcSwap(vj,vi); swapped = true; } } // Create samples along the edge. float dx = vi[0] - vj[0]; float dy = vi[1] - vj[1]; float dz = vi[2] - vj[2]; float d = sqrtf(dx*dx + dz*dz); int nn = 1 + (int)floorf(d/sampleDist); if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1; if (nverts+nn >= MAX_VERTS) nn = MAX_VERTS-1-nverts; for (int k = 0; k <= nn; ++k) { float u = (float)k/(float)nn; float* pos = &edge[k*3]; pos[0] = vj[0] + dx*u; pos[1] = vj[1] + dy*u; pos[2] = vj[2] + dz*u; pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, hp)*chf.ch; } // Simplify samples. int idx[MAX_VERTS_PER_EDGE] = {0,nn}; int nidx = 2; for (int k = 0; k < nidx-1; ) { const int a = idx[k]; const int b = idx[k+1]; const float* va = &edge[a*3]; const float* vb = &edge[b*3]; // Find maximum deviation along the segment. float maxd = 0; int maxi = -1; for (int m = a+1; m < b; ++m) { float d = distancePtSeg(&edge[m*3],va,vb); if (d > maxd) { maxd = d; maxi = m; } } // If the max deviation is larger than accepted error, // add new point, else continue to next segment. if (maxi != -1 && maxd > rcSqr(sampleMaxError)) { for (int m = nidx; m > k; --m) idx[m] = idx[m-1]; idx[k+1] = maxi; nidx++; } else { ++k; } } hull[nhull++] = j; // Add new vertices. if (swapped) { for (int k = nidx-2; k > 0; --k) { rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); hull[nhull++] = nverts; nverts++; } } else { for (int k = 1; k < nidx-1; ++k) { rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); hull[nhull++] = nverts; nverts++; } } } } // Tessellate the base mesh. edges.resize(0); tris.resize(0); delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges); if (tris.size() == 0) { // Could not triangulate the poly, make sure there is some valid data there. ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon, adding default data."); for (int i = 2; i < nverts; ++i) { tris.push(0); tris.push(i-1); tris.push(i); tris.push(0); } return true; } if (sampleDist > 0) { // Create sample locations in a grid. float bmin[3], bmax[3]; rcVcopy(bmin, in); rcVcopy(bmax, in); for (int i = 1; i < nin; ++i) { rcVmin(bmin, &in[i*3]); rcVmax(bmax, &in[i*3]); } int x0 = (int)floorf(bmin[0]/sampleDist); int x1 = (int)ceilf(bmax[0]/sampleDist); int z0 = (int)floorf(bmin[2]/sampleDist); int z1 = (int)ceilf(bmax[2]/sampleDist); samples.resize(0); for (int z = z0; z < z1; ++z) { for (int x = x0; x < x1; ++x) { float pt[3]; pt[0] = x*sampleDist; pt[1] = (bmax[1]+bmin[1])*0.5f; pt[2] = z*sampleDist; // Make sure the samples are not too close to the edges. if (distToPoly(nin,in,pt) > -sampleDist/2) continue; samples.push(x); samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, hp)); samples.push(z); samples.push(0); // Not added } } // Add the samples starting from the one that has the most // error. The procedure stops when all samples are added // or when the max error is within treshold. const int nsamples = samples.size()/4; for (int iter = 0; iter < nsamples; ++iter) { if (nverts >= MAX_VERTS) break; // Find sample with most error. float bestpt[3] = {0,0,0}; float bestd = 0; int besti = -1; for (int i = 0; i < nsamples; ++i) { const int* s = &samples[i*4]; if (s[3]) continue; // skip added. float pt[3]; // The sample location is jittered to get rid of some bad triangulations // which are cause by symmetrical data from the grid structure. pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f; pt[1] = s[1]*chf.ch; pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f; float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4); if (d < 0) continue; // did not hit the mesh. if (d > bestd) { bestd = d; besti = i; rcVcopy(bestpt,pt); } } // If the max error is within accepted threshold, stop tesselating. if (bestd <= sampleMaxError || besti == -1) break; // Mark sample as added. samples[besti*4+3] = 1; // Add the new sample point. rcVcopy(&verts[nverts*3],bestpt); nverts++; // Create new triangulation. // TODO: Incremental add instead of full rebuild. edges.resize(0); tris.resize(0); delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges); } } const int ntris = tris.size()/4; if (ntris > MAX_TRIS) { tris.resize(MAX_TRIS*4); ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS); } return true; } static void getHeightData(const rcCompactHeightfield& chf, const unsigned short* poly, const int npoly, const unsigned short* verts, const int bs, rcHeightPatch& hp, rcIntArray& stack) { // Floodfill the heightfield to get 2D height data, // starting at vertex locations as seeds. // Note: Reads to the compact heightfield are offset by border size (bs) // since border size offset is already removed from the polymesh vertices. memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height); stack.resize(0); static const int offset[9*2] = { 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0, }; // Use poly vertices as seed points for the flood fill. for (int j = 0; j < npoly; ++j) { int cx = 0, cz = 0, ci =-1; int dmin = RC_UNSET_HEIGHT; for (int k = 0; k < 9; ++k) { const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0]; const int ay = (int)verts[poly[j]*3+1]; const int az = (int)verts[poly[j]*3+2] + offset[k*2+1]; if (ax < hp.xmin || ax >= hp.xmin+hp.width || az < hp.ymin || az >= hp.ymin+hp.height) continue; const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; int d = rcAbs(ay - (int)s.y); if (d < dmin) { cx = ax; cz = az; ci = i; dmin = d; } } } if (ci != -1) { stack.push(cx); stack.push(cz); stack.push(ci); } } // Find center of the polygon using flood fill. int pcx = 0, pcz = 0; for (int j = 0; j < npoly; ++j) { pcx += (int)verts[poly[j]*3+0]; pcz += (int)verts[poly[j]*3+2]; } pcx /= npoly; pcz /= npoly; for (int i = 0; i < stack.size(); i += 3) { int cx = stack[i+0]; int cy = stack[i+1]; int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width; hp.data[idx] = 1; } while (stack.size() > 0) { int ci = stack.pop(); int cy = stack.pop(); int cx = stack.pop(); // Check if close to center of the polygon. if (rcAbs(cx-pcx) <= 1 && rcAbs(cy-pcz) <= 1) { stack.resize(0); stack.push(cx); stack.push(cy); stack.push(ci); break; } const rcCompactSpan& cs = chf.spans[ci]; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue; const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); if (ax < hp.xmin || ax >= (hp.xmin+hp.width) || ay < hp.ymin || ay >= (hp.ymin+hp.height)) continue; if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != 0) continue; const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir); int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width; hp.data[idx] = 1; stack.push(ax); stack.push(ay); stack.push(ai); } } memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); // Mark start locations. for (int i = 0; i < stack.size(); i += 3) { int cx = stack[i+0]; int cy = stack[i+1]; int ci = stack[i+2]; int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width; const rcCompactSpan& cs = chf.spans[ci]; hp.data[idx] = cs.y; } static const int RETRACT_SIZE = 256; int head = 0; while (head*3 < stack.size()) { int cx = stack[head*3+0]; int cy = stack[head*3+1]; int ci = stack[head*3+2]; head++; if (head >= RETRACT_SIZE) { head = 0; if (stack.size() > RETRACT_SIZE*3) memmove(&stack[0], &stack[RETRACT_SIZE*3], sizeof(int)*(stack.size()-RETRACT_SIZE*3)); stack.resize(stack.size()-RETRACT_SIZE*3); } const rcCompactSpan& cs = chf.spans[ci]; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue; const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); if (ax < hp.xmin || ax >= (hp.xmin+hp.width) || ay < hp.ymin || ay >= (hp.ymin+hp.height)) continue; if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != RC_UNSET_HEIGHT) continue; const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir); const rcCompactSpan& as = chf.spans[ai]; int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width; hp.data[idx] = as.y; stack.push(ax); stack.push(ay); stack.push(ai); } } } static unsigned char getEdgeFlags(const float* va, const float* vb, const float* vpoly, const int npoly) { // Return true if edge (va,vb) is part of the polygon. static const float thrSqr = rcSqr(0.001f); for (int i = 0, j = npoly-1; i < npoly; j=i++) { if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr && distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr) return 1; } return 0; } static unsigned char getTriFlags(const float* va, const float* vb, const float* vc, const float* vpoly, const int npoly) { unsigned char flags = 0; flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0; flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2; flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4; return flags; } /// @par /// /// See the #rcConfig documentation for more information on the configuration parameters. /// /// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, const float sampleDist, const float sampleMaxError, rcPolyMeshDetail& dmesh) { rcAssert(ctx); ctx->startTimer(RC_TIMER_BUILD_POLYMESHDETAIL); if (mesh.nverts == 0 || mesh.npolys == 0) return true; const int nvp = mesh.nvp; const float cs = mesh.cs; const float ch = mesh.ch; const float* orig = mesh.bmin; const int borderSize = mesh.borderSize; rcIntArray edges(64); rcIntArray tris(512); rcIntArray stack(512); rcIntArray samples(512); float verts[256*3]; rcHeightPatch hp; int nPolyVerts = 0; int maxhw = 0, maxhh = 0; rcScopedDelete bounds = (int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP); if (!bounds) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4); return false; } rcScopedDelete poly = (float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP); if (!poly) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3); return false; } // Find max size for a polygon area. for (int i = 0; i < mesh.npolys; ++i) { const unsigned short* p = &mesh.polys[i*nvp*2]; int& xmin = bounds[i*4+0]; int& xmax = bounds[i*4+1]; int& ymin = bounds[i*4+2]; int& ymax = bounds[i*4+3]; xmin = chf.width; xmax = 0; ymin = chf.height; ymax = 0; for (int j = 0; j < nvp; ++j) { if(p[j] == RC_MESH_NULL_IDX) break; const unsigned short* v = &mesh.verts[p[j]*3]; xmin = rcMin(xmin, (int)v[0]); xmax = rcMax(xmax, (int)v[0]); ymin = rcMin(ymin, (int)v[2]); ymax = rcMax(ymax, (int)v[2]); nPolyVerts++; } xmin = rcMax(0,xmin-1); xmax = rcMin(chf.width,xmax+1); ymin = rcMax(0,ymin-1); ymax = rcMin(chf.height,ymax+1); if (xmin >= xmax || ymin >= ymax) continue; maxhw = rcMax(maxhw, xmax-xmin); maxhh = rcMax(maxhh, ymax-ymin); } hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP); if (!hp.data) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh); return false; } dmesh.nmeshes = mesh.npolys; dmesh.nverts = 0; dmesh.ntris = 0; dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM); if (!dmesh.meshes) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4); return false; } int vcap = nPolyVerts+nPolyVerts/2; int tcap = vcap*2; dmesh.nverts = 0; dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); if (!dmesh.verts) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3); return false; } dmesh.ntris = 0; dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char*)*tcap*4, RC_ALLOC_PERM); if (!dmesh.tris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4); return false; } for (int i = 0; i < mesh.npolys; ++i) { const unsigned short* p = &mesh.polys[i*nvp*2]; // Store polygon vertices for processing. int npoly = 0; for (int j = 0; j < nvp; ++j) { if(p[j] == RC_MESH_NULL_IDX) break; const unsigned short* v = &mesh.verts[p[j]*3]; poly[j*3+0] = v[0]*cs; poly[j*3+1] = v[1]*ch; poly[j*3+2] = v[2]*cs; npoly++; } // Get the height data from the area of the polygon. hp.xmin = bounds[i*4+0]; hp.ymin = bounds[i*4+2]; hp.width = bounds[i*4+1]-bounds[i*4+0]; hp.height = bounds[i*4+3]-bounds[i*4+2]; getHeightData(chf, p, npoly, mesh.verts, borderSize, hp, stack); // Build detail mesh. int nverts = 0; if (!buildPolyDetail(ctx, poly, npoly, sampleDist, sampleMaxError, chf, hp, verts, nverts, tris, edges, samples)) { return false; } // Move detail verts to world space. for (int j = 0; j < nverts; ++j) { verts[j*3+0] += orig[0]; verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary? verts[j*3+2] += orig[2]; } // Offset poly too, will be used to flag checking. for (int j = 0; j < npoly; ++j) { poly[j*3+0] += orig[0]; poly[j*3+1] += orig[1]; poly[j*3+2] += orig[2]; } // Store detail submesh. const int ntris = tris.size()/4; dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts; dmesh.meshes[i*4+1] = (unsigned int)nverts; dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris; dmesh.meshes[i*4+3] = (unsigned int)ntris; // Store vertices, allocate more memory if necessary. if (dmesh.nverts+nverts > vcap) { while (dmesh.nverts+nverts > vcap) vcap += 256; float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); if (!newv) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3); return false; } if (dmesh.nverts) memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts); rcFree(dmesh.verts); dmesh.verts = newv; } for (int j = 0; j < nverts; ++j) { dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0]; dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1]; dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2]; dmesh.nverts++; } // Store triangles, allocate more memory if necessary. if (dmesh.ntris+ntris > tcap) { while (dmesh.ntris+ntris > tcap) tcap += 256; unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM); if (!newt) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4); return false; } if (dmesh.ntris) memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris); rcFree(dmesh.tris); dmesh.tris = newt; } for (int j = 0; j < ntris; ++j) { const int* t = &tris[j*4]; dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0]; dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1]; dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2]; dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly); dmesh.ntris++; } } ctx->stopTimer(RC_TIMER_BUILD_POLYMESHDETAIL); return true; } /// @see rcAllocPolyMeshDetail, rcPolyMeshDetail bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh) { rcAssert(ctx); ctx->startTimer(RC_TIMER_MERGE_POLYMESHDETAIL); int maxVerts = 0; int maxTris = 0; int maxMeshes = 0; for (int i = 0; i < nmeshes; ++i) { if (!meshes[i]) continue; maxVerts += meshes[i]->nverts; maxTris += meshes[i]->ntris; maxMeshes += meshes[i]->nmeshes; } mesh.nmeshes = 0; mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM); if (!mesh.meshes) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4); return false; } mesh.ntris = 0; mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM); if (!mesh.tris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4); return false; } mesh.nverts = 0; mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM); if (!mesh.verts) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3); return false; } // Merge datas. for (int i = 0; i < nmeshes; ++i) { rcPolyMeshDetail* dm = meshes[i]; if (!dm) continue; for (int j = 0; j < dm->nmeshes; ++j) { unsigned int* dst = &mesh.meshes[mesh.nmeshes*4]; unsigned int* src = &dm->meshes[j*4]; dst[0] = (unsigned int)mesh.nverts+src[0]; dst[1] = src[1]; dst[2] = (unsigned int)mesh.ntris+src[2]; dst[3] = src[3]; mesh.nmeshes++; } for (int k = 0; k < dm->nverts; ++k) { rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]); mesh.nverts++; } for (int k = 0; k < dm->ntris; ++k) { mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0]; mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1]; mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2]; mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3]; mesh.ntris++; } } ctx->stopTimer(RC_TIMER_MERGE_POLYMESHDETAIL); return true; }