/* * SOLID - Software Library for Interference Detection * * Copyright (C) 2001-2003 Dtecta. All rights reserved. * * This library may be distributed under the terms of the Q Public License * (QPL) as defined by Trolltech AS of Norway and appearing in the file * LICENSE.QPL included in the packaging of this file. * * This library may be distributed and/or modified under the terms of the * GNU General Public License (GPL) version 2 as published by the Free Software * Foundation and appearing in the file LICENSE.GPL included in the * packaging of this file. * * This library is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * Commercial use or any other use of this library not covered by either * the QPL or the GPL requires an additional license from Dtecta. * Please contact info@dtecta.com for enquiries about the terms of commercial * use of this library. */ #ifndef DT_GJK_H #define DT_GJK_H //#define USE_BACKUP_PROCEDURE #define JOHNSON_ROBUST #define FAST_CLOSEST #include "MT_Point3.h" #include "MT_Vector3.h" #include "GEN_MinMax.h" #include "DT_Accuracy.h" class DT_GJK { private: typedef unsigned int T_Bits; inline static bool subseteq(T_Bits a, T_Bits b) { return (a & b) == a; } inline static bool contains(T_Bits a, T_Bits b) { return (a & b) != 0x0; } public: DT_GJK() : m_bits(0x0), m_all_bits(0x0) {} bool emptySimplex() const { return m_bits == 0x0; } bool fullSimplex() const { return m_bits == 0xf; } void reset() { m_bits = 0x0; m_all_bits = 0x0; } bool inSimplex(const MT_Vector3& w) { int i; T_Bits bit; for (i = 0, bit = 0x1; i < 4; ++i, bit <<= 1) { if (contains(m_all_bits, bit) && w == m_y[i]) { return true; } } return false; } void addVertex(const MT_Vector3& w) { assert(!fullSimplex()); m_last = 0; m_last_bit = 0x1; while (contains(m_bits, m_last_bit)) { ++m_last; m_last_bit <<= 1; } m_y[m_last] = w; m_ylen2[m_last] = w.length2(); m_all_bits = m_bits | m_last_bit; update_cache(); compute_det(); } void addVertex(const MT_Vector3& w, const MT_Point3& p, const MT_Point3& q) { addVertex(w); m_p[m_last] = p; m_q[m_last] = q; } int getSimplex(MT_Point3 *pBuf, MT_Point3 *qBuf, MT_Vector3 *yBuf) const { int num_verts = 0; int i; T_Bits bit; for (i = 0, bit = 0x1; i < 4; ++i, bit <<= 1) { if (contains(m_bits, bit)) { pBuf[num_verts] = m_p[i]; qBuf[num_verts] = m_q[i]; yBuf[num_verts] = m_y[i]; #ifdef DEBUG std::cout << "Point " << i << " = " << m_y[i] << std::endl; #endif ++num_verts; } } return num_verts; } void compute_points(MT_Point3& p1, MT_Point3& p2) { MT_Scalar sum = MT_Scalar(0.0); p1.setValue(MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(0.0)); p2.setValue(MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(0.0)); int i; T_Bits bit; for (i = 0, bit = 0x1; i < 4; ++i, bit <<= 1) { if (contains(m_bits, bit)) { sum += m_det[m_bits][i]; p1 += m_p[i] * m_det[m_bits][i]; p2 += m_q[i] * m_det[m_bits][i]; } } assert(sum > MT_Scalar(0.0)); MT_Scalar s = MT_Scalar(1.0) / sum; p1 *= s; p2 *= s; } bool closest(MT_Vector3& v) { #ifdef FAST_CLOSEST T_Bits s; for (s = m_bits; s != 0x0; --s) { if (subseteq(s, m_bits) && valid(s | m_last_bit)) { m_bits = s | m_last_bit; compute_vector(m_bits, v); return true; } } if (valid(m_last_bit)) { m_bits = m_last_bit; m_maxlen2 = m_ylen2[m_last]; v = m_y[m_last]; return true; } #else T_Bits s; for (s = m_all_bits; s != 0x0; --s) { if (subseteq(s, m_all_bits) && valid(s)) { m_bits = s; compute_vector(m_bits, v); return true; } } #endif // Original GJK calls the backup procedure at this point. #ifdef USE_BACKUP_PROCEDURE backup_closest(MT_Vector3& v); #endif return false; } void backup_closest(MT_Vector3& v) { MT_Scalar min_dist2 = MT_INFINITY; T_Bits s; for (s = m_all_bits; s != 0x0; --s) { if (subseteq(s, m_all_bits) && proper(s)) { MT_Vector3 u; compute_vector(s, u); MT_Scalar dist2 = u.length2(); if (dist2 < min_dist2) { min_dist2 = dist2; m_bits = s; v = u; } } } } MT_Scalar maxVertex() { return m_maxlen2; } private: void update_cache(); void compute_det(); bool valid(T_Bits s) { int i; T_Bits bit; for (i = 0, bit = 0x1; i < 4; ++i, bit <<= 1) { if (contains(m_all_bits, bit)) { if (contains(s, bit)) { if (m_det[s][i] <= MT_Scalar(0.0)) { return false; } } else if (m_det[s | bit][i] > MT_Scalar(0.0)) { return false; } } } return true; } bool proper(T_Bits s) { int i; T_Bits bit; for (i = 0, bit = 0x1; i < 4; ++i, bit <<= 1) { if (contains(s, bit) && m_det[s][i] <= MT_Scalar(0.0)) { return false; } } return true; } void compute_vector(T_Bits s, MT_Vector3& v) { m_maxlen2 = MT_Scalar(0.0); MT_Scalar sum = MT_Scalar(0.0); v .setValue(MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(0.0)); int i; T_Bits bit; for (i = 0, bit = 0x1; i < 4; ++i, bit <<= 1) { if (contains(s, bit)) { sum += m_det[s][i]; GEN_set_max(m_maxlen2, m_ylen2[i]); v += m_y[i] * m_det[s][i]; } } assert(sum > MT_Scalar(0.0)); v /= sum; } private: MT_Scalar m_det[16][4]; // cached sub-determinants MT_Vector3 m_edge[4][4]; #ifdef JOHNSON_ROBUST MT_Scalar m_norm[4][4]; #endif MT_Point3 m_p[4]; // support points of object A in local coordinates MT_Point3 m_q[4]; // support points of object B in local coordinates MT_Vector3 m_y[4]; // support points of A - B in world coordinates MT_Scalar m_ylen2[4]; // Squared lengths support points y MT_Scalar m_maxlen2; // Maximum squared length to a vertex of the current // simplex T_Bits m_bits; // identifies current simplex T_Bits m_last; // identifies last found support point T_Bits m_last_bit; // m_last_bit == 0x1 << last T_Bits m_all_bits; // m_all_bits == m_bits | m_last_bit }; inline void DT_GJK::update_cache() { int i; T_Bits bit; for (i = 0, bit = 0x1; i < 4; ++i, bit <<= 1) { if (contains(m_bits, bit)) { m_edge[i][m_last] = m_y[i] - m_y[m_last]; m_edge[m_last][i] = -m_edge[i][m_last]; #ifdef JOHNSON_ROBUST m_norm[i][m_last] = m_norm[m_last][i] = m_edge[i][m_last].length2(); #endif } } } #ifdef JOHNSON_ROBUST inline void DT_GJK::compute_det() { m_det[m_last_bit][m_last] = 1; int i; T_Bits si; for (i = 0, si = 0x1; i < 4; ++i, si <<= 1) { if (contains(m_bits, si)) { T_Bits s2 = si | m_last_bit; m_det[s2][i] = m_edge[m_last][i].dot(m_y[m_last]); m_det[s2][m_last] = m_edge[i][m_last].dot(m_y[i]); int j; T_Bits sj; for (j = 0, sj = 0x1; j < i; ++j, sj <<= 1) { if (contains(m_bits, sj)) { int k; T_Bits s3 = sj | s2; k = m_norm[i][j] < m_norm[m_last][j] ? i : m_last; m_det[s3][j] = m_det[s2][i] * m_edge[k][j].dot(m_y[i]) + m_det[s2][m_last] * m_edge[k][j].dot(m_y[m_last]); k = m_norm[j][i] < m_norm[m_last][i] ? j : m_last; m_det[s3][i] = m_det[sj|m_last_bit][j] * m_edge[k][i].dot(m_y[j]) + m_det[sj|m_last_bit][m_last] * m_edge[k][i].dot(m_y[m_last]); k = m_norm[i][m_last] < m_norm[j][m_last] ? i : j; m_det[s3][m_last] = m_det[sj|si][j] * m_edge[k][m_last].dot(m_y[j]) + m_det[sj|si][i] * m_edge[k][m_last].dot(m_y[i]); } } } } if (m_all_bits == 0xf) { int k; k = m_norm[1][0] < m_norm[2][0] ? (m_norm[1][0] < m_norm[3][0] ? 1 : 3) : (m_norm[2][0] < m_norm[3][0] ? 2 : 3); m_det[0xf][0] = m_det[0xe][1] * m_edge[k][0].dot(m_y[1]) + m_det[0xe][2] * m_edge[k][0].dot(m_y[2]) + m_det[0xe][3] * m_edge[k][0].dot(m_y[3]); k = m_norm[0][1] < m_norm[2][1] ? (m_norm[0][1] < m_norm[3][1] ? 0 : 3) : (m_norm[2][1] < m_norm[3][1] ? 2 : 3); m_det[0xf][1] = m_det[0xd][0] * m_edge[k][1].dot(m_y[0]) + m_det[0xd][2] * m_edge[k][1].dot(m_y[2]) + m_det[0xd][3] * m_edge[k][1].dot(m_y[3]); k = m_norm[0][2] < m_norm[1][2] ? (m_norm[0][2] < m_norm[3][2] ? 0 : 3) : (m_norm[1][2] < m_norm[3][2] ? 1 : 3); m_det[0xf][2] = m_det[0xb][0] * m_edge[k][2].dot(m_y[0]) + m_det[0xb][1] * m_edge[k][2].dot(m_y[1]) + m_det[0xb][3] * m_edge[k][2].dot(m_y[3]); k = m_norm[0][3] < m_norm[1][3] ? (m_norm[0][3] < m_norm[2][3] ? 0 : 2) : (m_norm[1][3] < m_norm[2][3] ? 1 : 2); m_det[0xf][3] = m_det[0x7][0] * m_edge[k][3].dot(m_y[0]) + m_det[0x7][1] * m_edge[k][3].dot(m_y[1]) + m_det[0x7][2] * m_edge[k][3].dot(m_y[2]); } } #else inline void DT_GJK::compute_det() { m_det[m_last_bit][m_last] = 1; int i; T_Bits si; for (i = 0, si = 0x1; i < 4; ++i, si <<= 1) { if (contains(m_bits, si)) { T_Bits s2 = si | m_last_bit; m_det[s2][i] = m_edge[m_last][i].dot(m_y[m_last]); m_det[s2][m_last] = m_edge[i][m_last].dot(m_y[i]); int j; T_Bits sj; for (j = 0, sj = 0x1; j < i; ++j, sj <<= 1) { if (contains(m_bits, sj)) { T_Bits s3 = sj | s2; m_det[s3][j] = m_det[s2][i] * m_edge[i][j].dot(m_y[i]) + m_det[s2][m_last] * m_edge[i][j].dot(m_y[m_last]); m_det[s3][i] = m_det[sj|m_last_bit][j] * m_edge[j][i].dot(m_y[j]) + m_det[sj|m_last_bit][m_last] * m_edge[j][i].dot(m_y[m_last]); m_det[s3][m_last] = m_det[sj|si][j] * m_edge[j][m_last].dot(m_y[j]) + m_det[sj|si][i] * m_edge[j][m_last].dot(m_y[i]); } } } } if (m_all_bits == 0xf) { m_det[0xf][0] = m_det[0xe][1] * m_edge[1][0].dot(m_y[1]) + m_det[0xe][2] * m_edge[1][0].dot(m_y[2]) + m_det[0xe][3] * m_edge[1][0].dot(m_y[3]); m_det[0xf][1] = m_det[0xd][0] * m_edge[0][1].dot(m_y[0]) + m_det[0xd][2] * m_edge[0][1].dot(m_y[2]) + m_det[0xd][3] * m_edge[0][1].dot(m_y[3]); m_det[0xf][2] = m_det[0xb][0] * m_edge[0][2].dot(m_y[0]) + m_det[0xb][1] * m_edge[0][2].dot(m_y[1]) + m_det[0xb][3] * m_edge[0][2].dot(m_y[3]); m_det[0xf][3] = m_det[0x7][0] * m_edge[0][3].dot(m_y[0]) + m_det[0x7][1] * m_edge[0][3].dot(m_y[1]) + m_det[0x7][2] * m_edge[0][3].dot(m_y[2]); } } #endif #endif