/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ #include "blender/object_cull.h" #include "blender/sync.h" #include "blender/util.h" #include "scene/alembic.h" #include "scene/camera.h" #include "scene/integrator.h" #include "scene/light.h" #include "scene/mesh.h" #include "scene/object.h" #include "scene/particles.h" #include "scene/scene.h" #include "scene/shader.h" #include "scene/shader_graph.h" #include "scene/shader_nodes.h" #include "scene/volume.h" #include "util/foreach.h" #include "util/hash.h" #include "util/log.h" #include "util/task.h" #include "BKE_duplilist.h" CCL_NAMESPACE_BEGIN /* Utilities */ bool BlenderSync::BKE_object_is_modified(BL::Object &b_ob) { /* test if we can instance or if the object is modified */ if (b_ob.type() == BL::Object::type_META) { /* multi-user and dupli metaballs are fused, can't instance */ return true; } else if (ccl::BKE_object_is_modified(b_ob, b_scene, preview)) { /* modifiers */ return true; } else { /* object level material links */ for (BL::MaterialSlot &b_slot : b_ob.material_slots) { if (b_slot.link() == BL::MaterialSlot::link_OBJECT) { return true; } } } return false; } bool BlenderSync::object_is_geometry(BObjectInfo &b_ob_info) { BL::ID b_ob_data = b_ob_info.object_data; if (!b_ob_data) { return false; } BL::Object::type_enum type = b_ob_info.iter_object.type(); if (type == BL::Object::type_VOLUME || type == BL::Object::type_CURVES || type == BL::Object::type_POINTCLOUD) { /* Will be exported attached to mesh. */ return true; } return b_ob_data.is_a(&RNA_Mesh); } bool BlenderSync::object_can_have_geometry(BL::Object &b_ob) { BL::Object::type_enum type = b_ob.type(); switch (type) { case BL::Object::type_MESH: case BL::Object::type_CURVE: case BL::Object::type_SURFACE: case BL::Object::type_META: case BL::Object::type_FONT: case BL::Object::type_CURVES: case BL::Object::type_POINTCLOUD: case BL::Object::type_VOLUME: return true; default: return false; } } bool BlenderSync::object_is_light(BL::Object &b_ob) { BL::ID b_ob_data = b_ob.data(); return (b_ob_data && b_ob_data.is_a(&RNA_Light)); } bool BlenderSync::object_is_camera(BL::Object &b_ob) { BL::ID b_ob_data = b_ob.data(); return (b_ob_data && b_ob_data.is_a(&RNA_Camera)); } void BlenderSync::sync_object_motion_init(BL::Object &b_parent, BL::Object &b_ob, Object *object) { /* Initialize motion blur for object, detecting if it's enabled and creating motion * steps array if so. */ array motion; object->set_motion(motion); Geometry *geom = object->get_geometry(); if (!geom) { return; } int motion_steps = 0; bool use_motion_blur = false; Scene::MotionType need_motion = scene->need_motion(); if (need_motion == Scene::MOTION_BLUR) { motion_steps = object_motion_steps(b_parent, b_ob, Object::MAX_MOTION_STEPS); if (motion_steps && object_use_deform_motion(b_parent, b_ob)) { use_motion_blur = true; } } else if (need_motion != Scene::MOTION_NONE) { motion_steps = 3; } geom->set_use_motion_blur(use_motion_blur); geom->set_motion_steps(motion_steps); motion.resize(motion_steps, transform_empty()); if (motion_steps) { motion[motion_steps / 2] = object->get_tfm(); /* update motion socket before trying to access object->motion_time */ object->set_motion(motion); for (size_t step = 0; step < motion_steps; step++) { motion_times.insert(object->motion_time(step)); } } } Object *BlenderSync::sync_object(BL::Depsgraph &b_depsgraph, BL::ViewLayer &b_view_layer, BL::DepsgraphObjectInstance &b_instance, float motion_time, bool use_particle_hair, bool show_lights, BlenderObjectCulling &culling, bool *use_portal, TaskPool *geom_task_pool) { const bool is_instance = b_instance.is_instance(); BL::Object b_ob = b_instance.object(); BL::Object b_parent = is_instance ? b_instance.parent() : b_instance.object(); BObjectInfo b_ob_info{b_ob, is_instance ? b_instance.instance_object() : b_ob, b_ob.data()}; const bool motion = motion_time != 0.0f; /*const*/ Transform tfm = get_transform(b_ob.matrix_world()); int *persistent_id = NULL; BL::Array persistent_id_array; if (is_instance) { persistent_id_array = b_instance.persistent_id(); persistent_id = persistent_id_array.data; if (!b_ob_info.is_real_object_data()) { /* Remember which object data the geometry is coming from, so that we can sync it when the * object has changed. */ instance_geometries_by_object[b_ob_info.real_object.ptr.data].insert(b_ob_info.object_data); } } /* light is handled separately */ if (!motion && object_is_light(b_ob)) { if (!show_lights) { return NULL; } /* TODO: don't use lights for excluded layers used as mask layer, * when dynamic overrides are back. */ #if 0 if (!((layer_flag & view_layer.holdout_layer) && (layer_flag & view_layer.exclude_layer))) #endif { sync_light(b_parent, persistent_id, b_ob_info, is_instance ? b_instance.random_id() : 0, tfm, use_portal); } return NULL; } /* only interested in object that we can create geometry from */ if (!object_is_geometry(b_ob_info)) { return NULL; } /* Perform object culling. */ if (culling.test(scene, b_ob, tfm)) { return NULL; } /* Visibility flags for both parent and child. */ PointerRNA cobject = RNA_pointer_get(&b_ob.ptr, "cycles"); bool use_holdout = b_parent.holdout_get(PointerRNA_NULL, b_view_layer); uint visibility = object_ray_visibility(b_ob) & PATH_RAY_ALL_VISIBILITY; if (b_parent.ptr.data != b_ob.ptr.data) { visibility &= object_ray_visibility(b_parent); } /* TODO: make holdout objects on excluded layer invisible for non-camera rays. */ #if 0 if (use_holdout && (layer_flag & view_layer.exclude_layer)) { visibility &= ~(PATH_RAY_ALL_VISIBILITY - PATH_RAY_CAMERA); } #endif /* Clear camera visibility for indirect only objects. */ bool use_indirect_only = !use_holdout && b_parent.indirect_only_get(PointerRNA_NULL, b_view_layer); if (use_indirect_only) { visibility &= ~PATH_RAY_CAMERA; } /* Don't export completely invisible objects. */ if (visibility == 0) { return NULL; } /* Use task pool only for non-instances, since sync_dupli_particle accesses * geometry. This restriction should be removed for better performance. */ TaskPool *object_geom_task_pool = (is_instance) ? NULL : geom_task_pool; /* key to lookup object */ ObjectKey key(b_parent, persistent_id, b_ob_info.real_object, use_particle_hair); Object *object; /* motion vector case */ if (motion) { object = object_map.find(key); if (object && object->use_motion()) { /* Set transform at matching motion time step. */ int time_index = object->motion_step(motion_time); if (time_index >= 0) { array motion = object->get_motion(); motion[time_index] = tfm; object->set_motion(motion); } /* mesh deformation */ if (object->get_geometry()) sync_geometry_motion( b_depsgraph, b_ob_info, object, motion_time, use_particle_hair, object_geom_task_pool); } return object; } /* test if we need to sync */ bool object_updated = object_map.add_or_update(&object, b_ob, b_parent, key) || (tfm != object->get_tfm()); /* mesh sync */ Geometry *geometry = sync_geometry( b_depsgraph, b_ob_info, object_updated, use_particle_hair, object_geom_task_pool); object->set_geometry(geometry); /* special case not tracked by object update flags */ if (sync_object_attributes(b_instance, object)) { object_updated = true; } /* holdout */ object->set_use_holdout(use_holdout); object->set_visibility(visibility); object->set_is_shadow_catcher(b_ob.is_shadow_catcher() || b_parent.is_shadow_catcher()); float shadow_terminator_shading_offset = get_float(cobject, "shadow_terminator_offset"); object->set_shadow_terminator_shading_offset(shadow_terminator_shading_offset); float shadow_terminator_geometry_offset = get_float(cobject, "shadow_terminator_geometry_offset"); object->set_shadow_terminator_geometry_offset(shadow_terminator_geometry_offset); float ao_distance = get_float(cobject, "ao_distance"); if (ao_distance == 0.0f && b_parent.ptr.data != b_ob.ptr.data) { PointerRNA cparent = RNA_pointer_get(&b_parent.ptr, "cycles"); ao_distance = get_float(cparent, "ao_distance"); } object->set_ao_distance(ao_distance); bool is_caustics_caster = get_boolean(cobject, "is_caustics_caster"); object->set_is_caustics_caster(is_caustics_caster); bool is_caustics_receiver = get_boolean(cobject, "is_caustics_receiver"); object->set_is_caustics_receiver(is_caustics_receiver); /* sync the asset name for Cryptomatte */ BL::Object parent = b_ob.parent(); ustring parent_name; if (parent) { while (parent.parent()) { parent = parent.parent(); } parent_name = parent.name(); } else { parent_name = b_ob.name(); } object->set_asset_name(parent_name); /* object sync * transform comparison should not be needed, but duplis don't work perfect * in the depsgraph and may not signal changes, so this is a workaround */ if (object->is_modified() || object_updated || (object->get_geometry() && object->get_geometry()->is_modified())) { object->name = b_ob.name().c_str(); object->set_pass_id(b_ob.pass_index()); const BL::Array object_color = b_ob.color(); object->set_color(get_float3(object_color)); object->set_alpha(object_color[3]); object->set_tfm(tfm); /* dupli texture coordinates and random_id */ if (is_instance) { object->set_dupli_generated(0.5f * get_float3(b_instance.orco()) - make_float3(0.5f, 0.5f, 0.5f)); object->set_dupli_uv(get_float2(b_instance.uv())); object->set_random_id(b_instance.random_id()); } else { object->set_dupli_generated(zero_float3()); object->set_dupli_uv(zero_float2()); object->set_random_id(hash_uint2(hash_string(object->name.c_str()), 0)); } /* lightgroup */ object->set_lightgroup(ustring(b_ob.lightgroup())); object->tag_update(scene); } sync_object_motion_init(b_parent, b_ob, object); if (is_instance) { /* Sync possible particle data. */ sync_dupli_particle(b_parent, b_instance, object); } return object; } extern "C" DupliObject *rna_hack_DepsgraphObjectInstance_dupli_object_get(PointerRNA *ptr); static float4 lookup_instance_property(BL::DepsgraphObjectInstance &b_instance, const string &name, bool use_instancer) { ::Object *ob = (::Object *)b_instance.object().ptr.data; ::DupliObject *dupli = nullptr; ::Object *dupli_parent = nullptr; /* If requesting instance data, check the parent particle system and object. */ if (use_instancer && b_instance.is_instance()) { dupli = rna_hack_DepsgraphObjectInstance_dupli_object_get(&b_instance.ptr); dupli_parent = (::Object *)b_instance.parent().ptr.data; } float4 value; BKE_object_dupli_find_rgba_attribute(ob, dupli, dupli_parent, name.c_str(), &value.x); return value; } bool BlenderSync::sync_object_attributes(BL::DepsgraphObjectInstance &b_instance, Object *object) { /* Find which attributes are needed. */ AttributeRequestSet requests = object->get_geometry()->needed_attributes(); /* Delete attributes that became unnecessary. */ vector &attributes = object->attributes; bool changed = false; for (int i = attributes.size() - 1; i >= 0; i--) { if (!requests.find(attributes[i].name())) { attributes.erase(attributes.begin() + i); changed = true; } } /* Update attribute values. */ foreach (AttributeRequest &req, requests.requests) { ustring name = req.name; std::string real_name; BlenderAttributeType type = blender_attribute_name_split_type(name, &real_name); if (type == BL::ShaderNodeAttribute::attribute_type_OBJECT || type == BL::ShaderNodeAttribute::attribute_type_INSTANCER) { bool use_instancer = (type == BL::ShaderNodeAttribute::attribute_type_INSTANCER); float4 value = lookup_instance_property(b_instance, real_name, use_instancer); /* Try finding the existing attribute value. */ ParamValue *param = NULL; for (size_t i = 0; i < attributes.size(); i++) { if (attributes[i].name() == name) { param = &attributes[i]; break; } } /* Replace or add the value. */ ParamValue new_param(name, TypeDesc::TypeFloat4, 1, &value); assert(new_param.datasize() == sizeof(value)); if (!param) { changed = true; attributes.push_back(new_param); } else if (memcmp(param->data(), &value, sizeof(value)) != 0) { changed = true; *param = new_param; } } } return changed; } /* Object Loop */ void BlenderSync::sync_procedural(BL::Object &b_ob, BL::MeshSequenceCacheModifier &b_mesh_cache, bool has_subdivision_modifier) { #ifdef WITH_ALEMBIC BL::CacheFile cache_file = b_mesh_cache.cache_file(); void *cache_file_key = cache_file.ptr.data; AlembicProcedural *procedural = static_cast( procedural_map.find(cache_file_key)); if (procedural == nullptr) { procedural = scene->create_node(); procedural_map.add(cache_file_key, procedural); } else { procedural_map.used(procedural); } float current_frame = static_cast(b_scene.frame_current()); if (cache_file.override_frame()) { current_frame = cache_file.frame(); } if (!cache_file.override_frame()) { procedural->set_start_frame(static_cast(b_scene.frame_start())); procedural->set_end_frame(static_cast(b_scene.frame_end())); } procedural->set_frame(current_frame); procedural->set_frame_rate(b_scene.render().fps() / b_scene.render().fps_base()); procedural->set_frame_offset(cache_file.frame_offset()); string absolute_path = blender_absolute_path(b_data, b_ob, b_mesh_cache.cache_file().filepath()); procedural->set_filepath(ustring(absolute_path)); array layers; for (BL::CacheFileLayer &layer : cache_file.layers) { if (layer.hide_layer()) { continue; } absolute_path = blender_absolute_path(b_data, b_ob, layer.filepath()); layers.push_back_slow(ustring(absolute_path)); } procedural->set_layers(layers); procedural->set_scale(cache_file.scale()); procedural->set_use_prefetch(cache_file.use_prefetch()); procedural->set_prefetch_cache_size(cache_file.prefetch_cache_size()); /* create or update existing AlembicObjects */ ustring object_path = ustring(b_mesh_cache.object_path()); AlembicObject *abc_object = procedural->get_or_create_object(object_path); array used_shaders = find_used_shaders(b_ob); abc_object->set_used_shaders(used_shaders); PointerRNA cobj = RNA_pointer_get(&b_ob.ptr, "cycles"); const float subd_dicing_rate = max(0.1f, RNA_float_get(&cobj, "dicing_rate") * dicing_rate); abc_object->set_subd_dicing_rate(subd_dicing_rate); abc_object->set_subd_max_level(max_subdivisions); abc_object->set_ignore_subdivision(!has_subdivision_modifier); if (abc_object->is_modified() || procedural->is_modified()) { procedural->tag_update(scene); } #else (void)b_ob; (void)b_mesh_cache; (void)has_subdivision_modifier; #endif } void BlenderSync::sync_objects(BL::Depsgraph &b_depsgraph, BL::SpaceView3D &b_v3d, float motion_time) { /* Task pool for multithreaded geometry sync. */ TaskPool geom_task_pool; /* layer data */ bool motion = motion_time != 0.0f; if (!motion) { /* prepare for sync */ light_map.pre_sync(); geometry_map.pre_sync(); object_map.pre_sync(); procedural_map.pre_sync(); particle_system_map.pre_sync(); motion_times.clear(); } else { geometry_motion_synced.clear(); } instance_geometries_by_object.clear(); /* initialize culling */ BlenderObjectCulling culling(scene, b_scene); /* object loop */ bool cancel = false; bool use_portal = false; const bool show_lights = BlenderViewportParameters(b_v3d, use_developer_ui).use_scene_lights; BL::ViewLayer b_view_layer = b_depsgraph.view_layer_eval(); BL::Depsgraph::object_instances_iterator b_instance_iter; for (b_depsgraph.object_instances.begin(b_instance_iter); b_instance_iter != b_depsgraph.object_instances.end() && !cancel; ++b_instance_iter) { BL::DepsgraphObjectInstance b_instance = *b_instance_iter; BL::Object b_ob = b_instance.object(); /* Viewport visibility. */ const bool show_in_viewport = !b_v3d || b_ob.visible_in_viewport_get(b_v3d); if (show_in_viewport == false) { continue; } /* Load per-object culling data. */ culling.init_object(scene, b_ob); /* Ensure the object geom supporting the hair is processed before adding * the hair processing task to the task pool, calling .to_mesh() on the * same object in parallel does not work. */ const bool sync_hair = b_instance.show_particles() && object_has_particle_hair(b_ob); /* Object itself. */ if (b_instance.show_self()) { #ifdef WITH_ALEMBIC bool use_procedural = false; bool has_subdivision_modifier = false; BL::MeshSequenceCacheModifier b_mesh_cache(PointerRNA_NULL); /* Experimental as Blender does not have good support for procedurals at the moment. */ if (experimental) { b_mesh_cache = object_mesh_cache_find(b_ob, &has_subdivision_modifier); use_procedural = b_mesh_cache && b_mesh_cache.cache_file().use_render_procedural(); } if (use_procedural) { /* Skip in the motion case, as generating motion blur data will be handled in the * procedural. */ if (!motion) { sync_procedural(b_ob, b_mesh_cache, has_subdivision_modifier); } } else #endif { sync_object(b_depsgraph, b_view_layer, b_instance, motion_time, false, show_lights, culling, &use_portal, sync_hair ? NULL : &geom_task_pool); } } /* Particle hair as separate object. */ if (sync_hair) { sync_object(b_depsgraph, b_view_layer, b_instance, motion_time, true, show_lights, culling, &use_portal, &geom_task_pool); } cancel = progress.get_cancel(); } geom_task_pool.wait_work(); progress.set_sync_status(""); if (!cancel && !motion) { sync_background_light(b_v3d, use_portal); /* Handle removed data and modified pointers, as this may free memory, delete Nodes in the * right order to ensure that dependent data is freed after their users. Objects should be * freed before particle systems and geometries. */ light_map.post_sync(); object_map.post_sync(); geometry_map.post_sync(); particle_system_map.post_sync(); procedural_map.post_sync(); } if (motion) geometry_motion_synced.clear(); } void BlenderSync::sync_motion(BL::RenderSettings &b_render, BL::Depsgraph &b_depsgraph, BL::SpaceView3D &b_v3d, BL::Object &b_override, int width, int height, void **python_thread_state) { if (scene->need_motion() == Scene::MOTION_NONE) return; /* get camera object here to deal with camera switch */ BL::Object b_cam = b_scene.camera(); if (b_override) b_cam = b_override; int frame_center = b_scene.frame_current(); float subframe_center = b_scene.frame_subframe(); float frame_center_delta = 0.0f; if (scene->need_motion() != Scene::MOTION_PASS && scene->camera->get_motion_position() != MOTION_POSITION_CENTER) { float shuttertime = scene->camera->get_shuttertime(); if (scene->camera->get_motion_position() == MOTION_POSITION_END) { frame_center_delta = -shuttertime * 0.5f; } else { assert(scene->camera->get_motion_position() == MOTION_POSITION_START); frame_center_delta = shuttertime * 0.5f; } float time = frame_center + subframe_center + frame_center_delta; int frame = (int)floorf(time); float subframe = time - frame; python_thread_state_restore(python_thread_state); b_engine.frame_set(frame, subframe); python_thread_state_save(python_thread_state); if (b_cam) { sync_camera_motion(b_render, b_cam, width, height, 0.0f); } sync_objects(b_depsgraph, b_v3d); } /* Insert motion times from camera. Motion times from other objects * have already been added in a sync_objects call. */ if (b_cam) { uint camera_motion_steps = object_motion_steps(b_cam, b_cam); for (size_t step = 0; step < camera_motion_steps; step++) { motion_times.insert(scene->camera->motion_time(step)); } } /* Check which geometry already has motion blur so it can be skipped. */ geometry_motion_attribute_synced.clear(); for (Geometry *geom : scene->geometry) { if (geom->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)) { geometry_motion_attribute_synced.insert(geom); } } /* note iteration over motion_times set happens in sorted order */ foreach (float relative_time, motion_times) { /* center time is already handled. */ if (relative_time == 0.0f) { continue; } VLOG_WORK << "Synchronizing motion for the relative time " << relative_time << "."; /* fixed shutter time to get previous and next frame for motion pass */ float shuttertime = scene->motion_shutter_time(); /* compute frame and subframe time */ float time = frame_center + subframe_center + frame_center_delta + relative_time * shuttertime * 0.5f; int frame = (int)floorf(time); float subframe = time - frame; /* change frame */ python_thread_state_restore(python_thread_state); b_engine.frame_set(frame, subframe); python_thread_state_save(python_thread_state); /* Syncs camera motion if relative_time is one of the camera's motion times. */ sync_camera_motion(b_render, b_cam, width, height, relative_time); /* sync object */ sync_objects(b_depsgraph, b_v3d, relative_time); } geometry_motion_attribute_synced.clear(); /* we need to set the python thread state again because this * function assumes it is being executed from python and will * try to save the thread state */ python_thread_state_restore(python_thread_state); b_engine.frame_set(frame_center, subframe_center); python_thread_state_save(python_thread_state); } CCL_NAMESPACE_END