/* * Adapted from code copyright 2009-2010 NVIDIA Corporation * Modifications Copyright 2011, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bvh/bvh.h" #include "render/mesh.h" #include "render/object.h" #include "bvh/bvh2.h" #include "bvh/bvh4.h" #include "bvh/bvh8.h" #include "bvh/bvh_build.h" #include "bvh/bvh_node.h" #ifdef WITH_EMBREE #include "bvh/bvh_embree.h" #endif #include "util/util_foreach.h" #include "util/util_logging.h" #include "util/util_progress.h" CCL_NAMESPACE_BEGIN /* BVH Parameters. */ const char *bvh_layout_name(BVHLayout layout) { switch(layout) { case BVH_LAYOUT_BVH2: return "BVH2"; case BVH_LAYOUT_BVH4: return "BVH4"; case BVH_LAYOUT_BVH8: return "BVH8"; case BVH_LAYOUT_NONE: return "NONE"; case BVH_LAYOUT_EMBREE: return "EMBREE"; case BVH_LAYOUT_ALL: return "ALL"; } LOG(DFATAL) << "Unsupported BVH layout was passed."; return ""; } BVHLayout BVHParams::best_bvh_layout(BVHLayout requested_layout, BVHLayoutMask supported_layouts) { const BVHLayoutMask requested_layout_mask = (BVHLayoutMask)requested_layout; /* Check whether requested layout is supported, if so -- no need to do * any extra computation. */ if(supported_layouts & requested_layout_mask) { return requested_layout; } /* Some bit magic to get widest supported BVH layout. */ /* This is a mask of supported BVH layouts which are narrower than the * requested one. */ const BVHLayoutMask allowed_layouts_mask = (supported_layouts & (requested_layout_mask - 1)); /* We get widest from allowed ones and convert mask to actual layout. */ const BVHLayoutMask widest_allowed_layout_mask = __bsr(allowed_layouts_mask); return (BVHLayout)(1 << widest_allowed_layout_mask); } /* Pack Utility */ BVHStackEntry::BVHStackEntry(const BVHNode *n, int i) : node(n), idx(i) { } int BVHStackEntry::encodeIdx() const { return (node->is_leaf())? ~idx: idx; } /* BVH */ BVH::BVH(const BVHParams& params_, const vector& objects_) : params(params_), objects(objects_) { } BVH *BVH::create(const BVHParams& params, const vector& objects) { switch(params.bvh_layout) { case BVH_LAYOUT_BVH2: return new BVH2(params, objects); case BVH_LAYOUT_BVH4: return new BVH4(params, objects); case BVH_LAYOUT_BVH8: return new BVH8(params, objects); case BVH_LAYOUT_EMBREE: #ifdef WITH_EMBREE return new BVHEmbree(params, objects); #endif case BVH_LAYOUT_NONE: case BVH_LAYOUT_ALL: break; } LOG(DFATAL) << "Requested unsupported BVH layout."; return NULL; } /* Building */ void BVH::build(Progress& progress, Stats*) { progress.set_substatus("Building BVH"); /* build nodes */ BVHBuild bvh_build(objects, pack.prim_type, pack.prim_index, pack.prim_object, pack.prim_time, params, progress); BVHNode *root = bvh_build.run(); if(progress.get_cancel()) { if(root) root->deleteSubtree(); return; } /* pack triangles */ progress.set_substatus("Packing BVH triangles and strands"); pack_primitives(); if(progress.get_cancel()) { root->deleteSubtree(); return; } /* pack nodes */ progress.set_substatus("Packing BVH nodes"); pack_nodes(root); /* free build nodes */ root->deleteSubtree(); } /* Refitting */ void BVH::refit(Progress& progress) { progress.set_substatus("Packing BVH primitives"); pack_primitives(); if(progress.get_cancel()) return; progress.set_substatus("Refitting BVH nodes"); refit_nodes(); } void BVH::refit_primitives(int start, int end, BoundBox& bbox, uint& visibility) { /* Refit range of primitives. */ for(int prim = start; prim < end; prim++) { int pidx = pack.prim_index[prim]; int tob = pack.prim_object[prim]; Object *ob = objects[tob]; if(pidx == -1) { /* Object instance. */ bbox.grow(ob->bounds); } else { /* Primitives. */ const Mesh *mesh = ob->mesh; if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) { /* Curves. */ int str_offset = (params.top_level)? mesh->curve_offset: 0; Mesh::Curve curve = mesh->get_curve(pidx - str_offset); int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]); curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox); visibility |= PATH_RAY_CURVE; /* Motion curves. */ if(mesh->use_motion_blur) { Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->curve_keys.size(); size_t steps = mesh->motion_steps - 1; float3 *key_steps = attr->data_float3(); for(size_t i = 0; i < steps; i++) curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox); } } } else { /* Triangles. */ int tri_offset = (params.top_level)? mesh->tri_offset: 0; Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset); const float3 *vpos = &mesh->verts[0]; triangle.bounds_grow(vpos, bbox); /* Motion triangles. */ if(mesh->use_motion_blur) { Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->verts.size(); size_t steps = mesh->motion_steps - 1; float3 *vert_steps = attr->data_float3(); for(size_t i = 0; i < steps; i++) triangle.bounds_grow(vert_steps + i*mesh_size, bbox); } } } } visibility |= ob->visibility_for_tracing(); } } bool BVH::leaf_check(const BVHNode *node, BVH_TYPE bvh) { if(node->is_leaf()) { return node->is_unaligned; } else { return node_is_unaligned(node, bvh); } } bool BVH::node_is_unaligned(const BVHNode *node, BVH_TYPE bvh) { const BVHNode *node0 = node->get_child(0); const BVHNode *node1 = node->get_child(1); switch(bvh) { case bvh2: return node0->is_unaligned || node1->is_unaligned; break; case bvh4: return leaf_check(node0, bvh2) || leaf_check(node1, bvh2); break; case bvh8: return leaf_check(node0, bvh4) || leaf_check(node1, bvh4); break; default: assert(0); return false; } } /* Triangles */ void BVH::pack_triangle(int idx, float4 tri_verts[3]) { int tob = pack.prim_object[idx]; assert(tob >= 0 && tob < objects.size()); const Mesh *mesh = objects[tob]->mesh; int tidx = pack.prim_index[idx]; Mesh::Triangle t = mesh->get_triangle(tidx); const float3 *vpos = &mesh->verts[0]; float3 v0 = vpos[t.v[0]]; float3 v1 = vpos[t.v[1]]; float3 v2 = vpos[t.v[2]]; tri_verts[0] = float3_to_float4(v0); tri_verts[1] = float3_to_float4(v1); tri_verts[2] = float3_to_float4(v2); } void BVH::pack_primitives() { const size_t tidx_size = pack.prim_index.size(); size_t num_prim_triangles = 0; /* Count number of triangles primitives in BVH. */ for(unsigned int i = 0; i < tidx_size; i++) { if((pack.prim_index[i] != -1)) { if((pack.prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) { ++num_prim_triangles; } } } /* Reserve size for arrays. */ pack.prim_tri_index.clear(); pack.prim_tri_index.resize(tidx_size); pack.prim_tri_verts.clear(); pack.prim_tri_verts.resize(num_prim_triangles * 3); pack.prim_visibility.clear(); pack.prim_visibility.resize(tidx_size); /* Fill in all the arrays. */ size_t prim_triangle_index = 0; for(unsigned int i = 0; i < tidx_size; i++) { if(pack.prim_index[i] != -1) { int tob = pack.prim_object[i]; Object *ob = objects[tob]; if((pack.prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) { pack_triangle(i, (float4*)&pack.prim_tri_verts[3 * prim_triangle_index]); pack.prim_tri_index[i] = 3 * prim_triangle_index; ++prim_triangle_index; } else { pack.prim_tri_index[i] = -1; } pack.prim_visibility[i] = ob->visibility_for_tracing(); if(pack.prim_type[i] & PRIMITIVE_ALL_CURVE) { pack.prim_visibility[i] |= PATH_RAY_CURVE; } } else { pack.prim_tri_index[i] = -1; pack.prim_visibility[i] = 0; } } } /* Pack Instances */ void BVH::pack_instances(size_t nodes_size, size_t leaf_nodes_size) { /* The BVH's for instances are built separately, but for traversal all * BVH's are stored in global arrays. This function merges them into the * top level BVH, adjusting indexes and offsets where appropriate. */ const bool use_qbvh = (params.bvh_layout == BVH_LAYOUT_BVH4); const bool use_obvh = (params.bvh_layout == BVH_LAYOUT_BVH8); /* Adjust primitive index to point to the triangle in the global array, for * meshes with transform applied and already in the top level BVH. */ for(size_t i = 0; i < pack.prim_index.size(); i++) if(pack.prim_index[i] != -1) { if(pack.prim_type[i] & PRIMITIVE_ALL_CURVE) pack.prim_index[i] += objects[pack.prim_object[i]]->mesh->curve_offset; else pack.prim_index[i] += objects[pack.prim_object[i]]->mesh->tri_offset; } /* track offsets of instanced BVH data in global array */ size_t prim_offset = pack.prim_index.size(); size_t nodes_offset = nodes_size; size_t nodes_leaf_offset = leaf_nodes_size; /* clear array that gives the node indexes for instanced objects */ pack.object_node.clear(); /* reserve */ size_t prim_index_size = pack.prim_index.size(); size_t prim_tri_verts_size = pack.prim_tri_verts.size(); size_t pack_prim_index_offset = prim_index_size; size_t pack_prim_tri_verts_offset = prim_tri_verts_size; size_t pack_nodes_offset = nodes_size; size_t pack_leaf_nodes_offset = leaf_nodes_size; size_t object_offset = 0; map mesh_map; foreach(Object *ob, objects) { Mesh *mesh = ob->mesh; BVH *bvh = mesh->bvh; if(mesh->need_build_bvh()) { if(mesh_map.find(mesh) == mesh_map.end()) { prim_index_size += bvh->pack.prim_index.size(); prim_tri_verts_size += bvh->pack.prim_tri_verts.size(); nodes_size += bvh->pack.nodes.size(); leaf_nodes_size += bvh->pack.leaf_nodes.size(); mesh_map[mesh] = 1; } } } mesh_map.clear(); pack.prim_index.resize(prim_index_size); pack.prim_type.resize(prim_index_size); pack.prim_object.resize(prim_index_size); pack.prim_visibility.resize(prim_index_size); pack.prim_tri_verts.resize(prim_tri_verts_size); pack.prim_tri_index.resize(prim_index_size); pack.nodes.resize(nodes_size); pack.leaf_nodes.resize(leaf_nodes_size); pack.object_node.resize(objects.size()); if(params.num_motion_curve_steps > 0 || params.num_motion_triangle_steps > 0) { pack.prim_time.resize(prim_index_size); } int *pack_prim_index = (pack.prim_index.size())? &pack.prim_index[0]: NULL; int *pack_prim_type = (pack.prim_type.size())? &pack.prim_type[0]: NULL; int *pack_prim_object = (pack.prim_object.size())? &pack.prim_object[0]: NULL; uint *pack_prim_visibility = (pack.prim_visibility.size())? &pack.prim_visibility[0]: NULL; float4 *pack_prim_tri_verts = (pack.prim_tri_verts.size())? &pack.prim_tri_verts[0]: NULL; uint *pack_prim_tri_index = (pack.prim_tri_index.size())? &pack.prim_tri_index[0]: NULL; int4 *pack_nodes = (pack.nodes.size())? &pack.nodes[0]: NULL; int4 *pack_leaf_nodes = (pack.leaf_nodes.size())? &pack.leaf_nodes[0]: NULL; float2 *pack_prim_time = (pack.prim_time.size())? &pack.prim_time[0]: NULL; /* merge */ foreach(Object *ob, objects) { Mesh *mesh = ob->mesh; /* We assume that if mesh doesn't need own BVH it was already included * into a top-level BVH and no packing here is needed. */ if(!mesh->need_build_bvh()) { pack.object_node[object_offset++] = 0; continue; } /* if mesh already added once, don't add it again, but used set * node offset for this object */ map::iterator it = mesh_map.find(mesh); if(mesh_map.find(mesh) != mesh_map.end()) { int noffset = it->second; pack.object_node[object_offset++] = noffset; continue; } BVH *bvh = mesh->bvh; int noffset = nodes_offset; int noffset_leaf = nodes_leaf_offset; int mesh_tri_offset = mesh->tri_offset; int mesh_curve_offset = mesh->curve_offset; /* fill in node indexes for instances */ if(bvh->pack.root_index == -1) pack.object_node[object_offset++] = -noffset_leaf-1; else pack.object_node[object_offset++] = noffset; mesh_map[mesh] = pack.object_node[object_offset-1]; /* merge primitive, object and triangle indexes */ if(bvh->pack.prim_index.size()) { size_t bvh_prim_index_size = bvh->pack.prim_index.size(); int *bvh_prim_index = &bvh->pack.prim_index[0]; int *bvh_prim_type = &bvh->pack.prim_type[0]; uint *bvh_prim_visibility = &bvh->pack.prim_visibility[0]; uint *bvh_prim_tri_index = &bvh->pack.prim_tri_index[0]; float2 *bvh_prim_time = bvh->pack.prim_time.size()? &bvh->pack.prim_time[0]: NULL; for(size_t i = 0; i < bvh_prim_index_size; i++) { if(bvh->pack.prim_type[i] & PRIMITIVE_ALL_CURVE) { pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + mesh_curve_offset; pack_prim_tri_index[pack_prim_index_offset] = -1; } else { pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + mesh_tri_offset; pack_prim_tri_index[pack_prim_index_offset] = bvh_prim_tri_index[i] + pack_prim_tri_verts_offset; } pack_prim_type[pack_prim_index_offset] = bvh_prim_type[i]; pack_prim_visibility[pack_prim_index_offset] = bvh_prim_visibility[i]; pack_prim_object[pack_prim_index_offset] = 0; // unused for instances if(bvh_prim_time != NULL) { pack_prim_time[pack_prim_index_offset] = bvh_prim_time[i]; } pack_prim_index_offset++; } } /* Merge triangle vertices data. */ if(bvh->pack.prim_tri_verts.size()) { const size_t prim_tri_size = bvh->pack.prim_tri_verts.size(); memcpy(pack_prim_tri_verts + pack_prim_tri_verts_offset, &bvh->pack.prim_tri_verts[0], prim_tri_size*sizeof(float4)); pack_prim_tri_verts_offset += prim_tri_size; } /* merge nodes */ if(bvh->pack.leaf_nodes.size()) { int4 *leaf_nodes_offset = &bvh->pack.leaf_nodes[0]; size_t leaf_nodes_offset_size = bvh->pack.leaf_nodes.size(); for(size_t i = 0, j = 0; i < leaf_nodes_offset_size; i += BVH_NODE_LEAF_SIZE, j++) { int4 data = leaf_nodes_offset[i]; data.x += prim_offset; data.y += prim_offset; pack_leaf_nodes[pack_leaf_nodes_offset] = data; for(int j = 1; j < BVH_NODE_LEAF_SIZE; ++j) { pack_leaf_nodes[pack_leaf_nodes_offset + j] = leaf_nodes_offset[i + j]; } pack_leaf_nodes_offset += BVH_NODE_LEAF_SIZE; } } if(bvh->pack.nodes.size()) { int4 *bvh_nodes = &bvh->pack.nodes[0]; size_t bvh_nodes_size = bvh->pack.nodes.size(); for(size_t i = 0, j = 0; i < bvh_nodes_size; j++) { size_t nsize, nsize_bbox; if(bvh_nodes[i].x & PATH_RAY_NODE_UNALIGNED) { if(use_obvh) { nsize = BVH_UNALIGNED_ONODE_SIZE; nsize_bbox = BVH_UNALIGNED_ONODE_SIZE-1; } else { nsize = use_qbvh ? BVH_UNALIGNED_QNODE_SIZE : BVH_UNALIGNED_NODE_SIZE; nsize_bbox = (use_qbvh) ? BVH_UNALIGNED_QNODE_SIZE-1 : 0; } } else { if(use_obvh) { nsize = BVH_ONODE_SIZE; nsize_bbox = BVH_ONODE_SIZE-1; } else { nsize = (use_qbvh)? BVH_QNODE_SIZE: BVH_NODE_SIZE; nsize_bbox = (use_qbvh)? BVH_QNODE_SIZE-1 : 0; } } memcpy(pack_nodes + pack_nodes_offset, bvh_nodes + i, nsize_bbox*sizeof(int4)); /* Modify offsets into arrays */ int4 data = bvh_nodes[i + nsize_bbox]; int4 data1 = bvh_nodes[i + nsize_bbox-1]; if(use_obvh) { data.z += (data.z < 0) ? -noffset_leaf : noffset; data.w += (data.w < 0) ? -noffset_leaf : noffset; data.x += (data.x < 0) ? -noffset_leaf : noffset; data.y += (data.y < 0) ? -noffset_leaf : noffset; data1.z += (data1.z < 0) ? -noffset_leaf : noffset; data1.w += (data1.w < 0) ? -noffset_leaf : noffset; data1.x += (data1.x < 0) ? -noffset_leaf : noffset; data1.y += (data1.y < 0) ? -noffset_leaf : noffset; } else { data.z += (data.z < 0) ? -noffset_leaf : noffset; data.w += (data.w < 0) ? -noffset_leaf : noffset; if(use_qbvh) { data.x += (data.x < 0)? -noffset_leaf: noffset; data.y += (data.y < 0)? -noffset_leaf: noffset; } } pack_nodes[pack_nodes_offset + nsize_bbox] = data; if(use_obvh) { pack_nodes[pack_nodes_offset + nsize_bbox - 1] = data1; } /* Usually this copies nothing, but we better * be prepared for possible node size extension. */ memcpy(&pack_nodes[pack_nodes_offset + nsize_bbox+1], &bvh_nodes[i + nsize_bbox+1], sizeof(int4) * (nsize - (nsize_bbox+1))); pack_nodes_offset += nsize; i += nsize; } } nodes_offset += bvh->pack.nodes.size(); nodes_leaf_offset += bvh->pack.leaf_nodes.size(); prim_offset += bvh->pack.prim_index.size(); } } CCL_NAMESPACE_END