/* * Adapted from code copyright 2009-2010 NVIDIA Corporation * Modifications Copyright 2011, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mesh.h" #include "object.h" #include "scene.h" #include "curves.h" #include "bvh.h" #include "bvh_build.h" #include "bvh_node.h" #include "bvh_params.h" #include "util_cache.h" #include "util_debug.h" #include "util_foreach.h" #include "util_map.h" #include "util_progress.h" #include "util_system.h" #include "util_types.h" #include "util_math.h" CCL_NAMESPACE_BEGIN /* Pack Utility */ struct BVHStackEntry { const BVHNode *node; int idx; BVHStackEntry(const BVHNode* n = 0, int i = 0) : node(n), idx(i) { } int encodeIdx() const { return (node->is_leaf())? ~idx: idx; } }; /* BVH */ BVH::BVH(const BVHParams& params_, const vector& objects_) : params(params_), objects(objects_) { } BVH *BVH::create(const BVHParams& params, const vector& objects) { if(params.use_qbvh) return new QBVH(params, objects); else return new RegularBVH(params, objects); } /* Cache */ bool BVH::cache_read(CacheData& key) { key.add(system_cpu_bits()); key.add(¶ms, sizeof(params)); foreach(Object *ob, objects) { Mesh *mesh = ob->mesh; key.add(mesh->verts); key.add(mesh->triangles); key.add(mesh->curve_keys); key.add(mesh->curves); key.add(&ob->bounds, sizeof(ob->bounds)); key.add(&ob->visibility, sizeof(ob->visibility)); key.add(&mesh->transform_applied, sizeof(bool)); if(mesh->use_motion_blur) { Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) key.add(attr->buffer); attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) key.add(attr->buffer); } } CacheData value; if(Cache::global.lookup(key, value)) { cache_filename = key.get_filename(); if(!(value.read(pack.root_index) && value.read(pack.SAH) && value.read(pack.nodes) && value.read(pack.object_node) && value.read(pack.tri_woop) && value.read(pack.prim_type) && value.read(pack.prim_visibility) && value.read(pack.prim_index) && value.read(pack.prim_object) && value.read(pack.is_leaf))) { /* Clear the pack if load failed. */ pack.root_index = 0; pack.SAH = 0.0f; pack.nodes.clear(); pack.object_node.clear(); pack.tri_woop.clear(); pack.prim_type.clear(); pack.prim_visibility.clear(); pack.prim_index.clear(); pack.prim_object.clear(); pack.is_leaf.clear(); return false; } return true; } return false; } void BVH::cache_write(CacheData& key) { CacheData value; value.add(pack.root_index); value.add(pack.SAH); value.add(pack.nodes); value.add(pack.object_node); value.add(pack.tri_woop); value.add(pack.prim_type); value.add(pack.prim_visibility); value.add(pack.prim_index); value.add(pack.prim_object); value.add(pack.is_leaf); Cache::global.insert(key, value); cache_filename = key.get_filename(); } void BVH::clear_cache_except() { set except; if(!cache_filename.empty()) except.insert(cache_filename); foreach(Object *ob, objects) { Mesh *mesh = ob->mesh; BVH *bvh = mesh->bvh; if(bvh && !bvh->cache_filename.empty()) except.insert(bvh->cache_filename); } Cache::global.clear_except("bvh", except); } /* Building */ void BVH::build(Progress& progress) { progress.set_substatus("Building BVH"); /* cache read */ CacheData key("bvh"); if(params.use_cache) { progress.set_substatus("Looking in BVH cache"); if(cache_read(key)) return; } /* build nodes */ vector prim_type; vector prim_index; vector prim_object; BVHBuild bvh_build(objects, prim_type, prim_index, prim_object, params, progress); BVHNode *root = bvh_build.run(); if(progress.get_cancel()) { if(root) root->deleteSubtree(); return; } /* todo: get rid of this copy */ pack.prim_type = prim_type; pack.prim_index = prim_index; pack.prim_object = prim_object; prim_type.free_memory(); prim_index.free_memory(); prim_object.free_memory(); /* compute SAH */ if(!params.top_level) pack.SAH = root->computeSubtreeSAHCost(params); if(progress.get_cancel()) { root->deleteSubtree(); return; } /* pack triangles */ progress.set_substatus("Packing BVH triangles and strands"); pack_primitives(); if(progress.get_cancel()) { root->deleteSubtree(); return; } /* pack nodes */ progress.set_substatus("Packing BVH nodes"); pack_nodes(root); /* free build nodes */ root->deleteSubtree(); if(progress.get_cancel()) return; /* cache write */ if(params.use_cache) { progress.set_substatus("Writing BVH cache"); cache_write(key); /* clear other bvh files from cache */ if(params.top_level) clear_cache_except(); } } /* Refitting */ void BVH::refit(Progress& progress) { progress.set_substatus("Packing BVH primitives"); pack_primitives(); if(progress.get_cancel()) return; progress.set_substatus("Refitting BVH nodes"); refit_nodes(); } /* Triangles */ void BVH::pack_triangle(int idx, float4 woop[3]) { int tob = pack.prim_object[idx]; assert(tob >= 0 && tob < objects.size()); const Mesh *mesh = objects[tob]->mesh; int tidx = pack.prim_index[idx]; const int *vidx = mesh->triangles[tidx].v; const float3* vpos = &mesh->verts[0]; float3 v0 = vpos[vidx[0]]; float3 v1 = vpos[vidx[1]]; float3 v2 = vpos[vidx[2]]; woop[0] = float3_to_float4(v0); woop[1] = float3_to_float4(v1); woop[2] = float3_to_float4(v2); } /* Curves*/ void BVH::pack_primitives() { int nsize = TRI_NODE_SIZE; size_t tidx_size = pack.prim_index.size(); pack.tri_woop.clear(); pack.tri_woop.resize(tidx_size * nsize); pack.prim_visibility.clear(); pack.prim_visibility.resize(tidx_size); for(unsigned int i = 0; i < tidx_size; i++) { if(pack.prim_index[i] != -1) { float4 woop[3]; if(pack.prim_type[i] & PRIMITIVE_TRIANGLE) { pack_triangle(i, woop); } else { /* Avoid use of uninitialized memory. */ memset(&woop, 0, sizeof(woop)); } memcpy(&pack.tri_woop[i * nsize], woop, sizeof(float4)*3); int tob = pack.prim_object[i]; Object *ob = objects[tob]; pack.prim_visibility[i] = ob->visibility; if(pack.prim_type[i] & PRIMITIVE_ALL_CURVE) pack.prim_visibility[i] |= PATH_RAY_CURVE; } else { memset(&pack.tri_woop[i * nsize], 0, sizeof(float4)*3); pack.prim_visibility[i] = 0; } } } /* Pack Instances */ void BVH::pack_instances(size_t nodes_size) { /* The BVH's for instances are built separately, but for traversal all * BVH's are stored in global arrays. This function merges them into the * top level BVH, adjusting indexes and offsets where appropriate. */ bool use_qbvh = params.use_qbvh; size_t nsize = (use_qbvh)? BVH_QNODE_SIZE: BVH_NODE_SIZE; /* adjust primitive index to point to the triangle in the global array, for * meshes with transform applied and already in the top level BVH */ for(size_t i = 0; i < pack.prim_index.size(); i++) if(pack.prim_index[i] != -1) { if(pack.prim_type[i] & PRIMITIVE_ALL_CURVE) pack.prim_index[i] += objects[pack.prim_object[i]]->mesh->curve_offset; else pack.prim_index[i] += objects[pack.prim_object[i]]->mesh->tri_offset; } /* track offsets of instanced BVH data in global array */ size_t prim_offset = pack.prim_index.size(); size_t nodes_offset = nodes_size; /* clear array that gives the node indexes for instanced objects */ pack.object_node.clear(); /* reserve */ size_t prim_index_size = pack.prim_index.size(); size_t tri_woop_size = pack.tri_woop.size(); size_t pack_prim_index_offset = prim_index_size; size_t pack_tri_woop_offset = tri_woop_size; size_t pack_nodes_offset = nodes_size; size_t object_offset = 0; map mesh_map; foreach(Object *ob, objects) { Mesh *mesh = ob->mesh; BVH *bvh = mesh->bvh; if(!mesh->transform_applied) { if(mesh_map.find(mesh) == mesh_map.end()) { prim_index_size += bvh->pack.prim_index.size(); tri_woop_size += bvh->pack.tri_woop.size(); nodes_size += bvh->pack.nodes.size(); mesh_map[mesh] = 1; } } } mesh_map.clear(); pack.prim_index.resize(prim_index_size); pack.prim_type.resize(prim_index_size); pack.prim_object.resize(prim_index_size); pack.prim_visibility.resize(prim_index_size); pack.tri_woop.resize(tri_woop_size); pack.nodes.resize(nodes_size); pack.object_node.resize(objects.size()); int *pack_prim_index = (pack.prim_index.size())? &pack.prim_index[0]: NULL; int *pack_prim_type = (pack.prim_type.size())? &pack.prim_type[0]: NULL; int *pack_prim_object = (pack.prim_object.size())? &pack.prim_object[0]: NULL; uint *pack_prim_visibility = (pack.prim_visibility.size())? &pack.prim_visibility[0]: NULL; float4 *pack_tri_woop = (pack.tri_woop.size())? &pack.tri_woop[0]: NULL; int4 *pack_nodes = (pack.nodes.size())? &pack.nodes[0]: NULL; /* merge */ foreach(Object *ob, objects) { Mesh *mesh = ob->mesh; /* if mesh transform is applied, that means it's already in the top * level BVH, and we don't need to merge it in */ if(mesh->transform_applied) { pack.object_node[object_offset++] = 0; continue; } /* if mesh already added once, don't add it again, but used set * node offset for this object */ map::iterator it = mesh_map.find(mesh); if(mesh_map.find(mesh) != mesh_map.end()) { int noffset = it->second; pack.object_node[object_offset++] = noffset; continue; } BVH *bvh = mesh->bvh; int noffset = nodes_offset/nsize; int mesh_tri_offset = mesh->tri_offset; int mesh_curve_offset = mesh->curve_offset; /* fill in node indexes for instances */ if((bvh->pack.is_leaf.size() != 0) && bvh->pack.is_leaf[0]) pack.object_node[object_offset++] = -noffset-1; else pack.object_node[object_offset++] = noffset; mesh_map[mesh] = pack.object_node[object_offset-1]; /* merge primitive and object indexes */ if(bvh->pack.prim_index.size()) { size_t bvh_prim_index_size = bvh->pack.prim_index.size(); int *bvh_prim_index = &bvh->pack.prim_index[0]; int *bvh_prim_type = &bvh->pack.prim_type[0]; uint *bvh_prim_visibility = &bvh->pack.prim_visibility[0]; for(size_t i = 0; i < bvh_prim_index_size; i++) { if(bvh->pack.prim_type[i] & PRIMITIVE_ALL_CURVE) pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + mesh_curve_offset; else pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + mesh_tri_offset; pack_prim_type[pack_prim_index_offset] = bvh_prim_type[i]; pack_prim_visibility[pack_prim_index_offset] = bvh_prim_visibility[i]; pack_prim_object[pack_prim_index_offset] = 0; // unused for instances pack_prim_index_offset++; } } /* merge triangle intersection data */ if(bvh->pack.tri_woop.size()) { memcpy(pack_tri_woop + pack_tri_woop_offset, &bvh->pack.tri_woop[0], bvh->pack.tri_woop.size()*sizeof(float4)); pack_tri_woop_offset += bvh->pack.tri_woop.size(); } /* merge nodes */ if(bvh->pack.nodes.size()) { /* For QBVH we're packing a child bbox into 6 float4, * and for regular BVH they're packed into 3 float4. */ size_t nsize_bbox = (use_qbvh)? 6: 3; int4 *bvh_nodes = &bvh->pack.nodes[0]; size_t bvh_nodes_size = bvh->pack.nodes.size(); bool *bvh_is_leaf = (bvh->pack.is_leaf.size() != 0) ? &bvh->pack.is_leaf[0] : NULL; for(size_t i = 0, j = 0; i < bvh_nodes_size; i+=nsize, j++) { memcpy(pack_nodes + pack_nodes_offset, bvh_nodes + i, nsize_bbox*sizeof(int4)); /* modify offsets into arrays */ int4 data = bvh_nodes[i + nsize_bbox]; if(bvh_is_leaf && bvh_is_leaf[j]) { data.x += prim_offset; data.y += prim_offset; } else { data.x += (data.x < 0)? -noffset: noffset; data.y += (data.y < 0)? -noffset: noffset; if(use_qbvh) { data.z += (data.z < 0)? -noffset: noffset; data.w += (data.w < 0)? -noffset: noffset; } } pack_nodes[pack_nodes_offset + nsize_bbox] = data; /* Usually this copies nothing, but we better * be prepared for possible node size extension. */ memcpy(&pack_nodes[pack_nodes_offset + nsize_bbox+1], &bvh_nodes[i + nsize_bbox+1], sizeof(int4) * (nsize - (nsize_bbox+1))); pack_nodes_offset += nsize; } } nodes_offset += bvh->pack.nodes.size(); prim_offset += bvh->pack.prim_index.size(); } } /* Regular BVH */ RegularBVH::RegularBVH(const BVHParams& params_, const vector& objects_) : BVH(params_, objects_) { } void RegularBVH::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf) { if(leaf->num_triangles() == 1 && pack.prim_index[leaf->m_lo] == -1) { /* object */ pack_node(e.idx, leaf->m_bounds, leaf->m_bounds, ~(leaf->m_lo), 0, leaf->m_visibility, leaf->m_visibility); } else { int prim_type = leaf->num_triangles() ? pack.prim_type[leaf->m_lo] : 0; /* Triangle/curve primitive leaf. */ pack_node(e.idx, leaf->m_bounds, leaf->m_bounds, leaf->m_lo, leaf->m_hi, leaf->m_visibility, prim_type); } } void RegularBVH::pack_inner(const BVHStackEntry& e, const BVHStackEntry& e0, const BVHStackEntry& e1) { pack_node(e.idx, e0.node->m_bounds, e1.node->m_bounds, e0.encodeIdx(), e1.encodeIdx(), e0.node->m_visibility, e1.node->m_visibility); } void RegularBVH::pack_node(int idx, const BoundBox& b0, const BoundBox& b1, int c0, int c1, uint visibility0, uint visibility1) { int4 data[BVH_NODE_SIZE] = { make_int4(__float_as_int(b0.min.x), __float_as_int(b1.min.x), __float_as_int(b0.max.x), __float_as_int(b1.max.x)), make_int4(__float_as_int(b0.min.y), __float_as_int(b1.min.y), __float_as_int(b0.max.y), __float_as_int(b1.max.y)), make_int4(__float_as_int(b0.min.z), __float_as_int(b1.min.z), __float_as_int(b0.max.z), __float_as_int(b1.max.z)), make_int4(c0, c1, visibility0, visibility1) }; memcpy(&pack.nodes[idx * BVH_NODE_SIZE], data, sizeof(int4)*BVH_NODE_SIZE); } void RegularBVH::pack_nodes(const BVHNode *root) { size_t node_size = root->getSubtreeSize(BVH_STAT_NODE_COUNT); /* resize arrays */ pack.nodes.clear(); pack.is_leaf.clear(); pack.is_leaf.resize(node_size); /* for top level BVH, first merge existing BVH's so we know the offsets */ if(params.top_level) pack_instances(node_size*BVH_NODE_SIZE); else pack.nodes.resize(node_size*BVH_NODE_SIZE); int nextNodeIdx = 0; vector stack; stack.reserve(BVHParams::MAX_DEPTH*2); stack.push_back(BVHStackEntry(root, nextNodeIdx++)); while(stack.size()) { BVHStackEntry e = stack.back(); stack.pop_back(); pack.is_leaf[e.idx] = e.node->is_leaf(); if(e.node->is_leaf()) { /* leaf node */ const LeafNode* leaf = reinterpret_cast(e.node); pack_leaf(e, leaf); } else { /* innner node */ stack.push_back(BVHStackEntry(e.node->get_child(0), nextNodeIdx++)); stack.push_back(BVHStackEntry(e.node->get_child(1), nextNodeIdx++)); pack_inner(e, stack[stack.size()-2], stack[stack.size()-1]); } } /* root index to start traversal at, to handle case of single leaf node */ pack.root_index = (pack.is_leaf[0])? -1: 0; } void RegularBVH::refit_nodes() { assert(!params.top_level); BoundBox bbox = BoundBox::empty; uint visibility = 0; refit_node(0, (pack.is_leaf[0])? true: false, bbox, visibility); } void RegularBVH::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility) { int4 *data = &pack.nodes[idx*BVH_NODE_SIZE]; int c0 = data[3].x; int c1 = data[3].y; if(leaf) { /* refit leaf node */ for(int prim = c0; prim < c1; prim++) { int pidx = pack.prim_index[prim]; int tob = pack.prim_object[prim]; Object *ob = objects[tob]; if(pidx == -1) { /* object instance */ bbox.grow(ob->bounds); } else { /* primitives */ const Mesh *mesh = ob->mesh; if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) { /* curves */ int str_offset = (params.top_level)? mesh->curve_offset: 0; const Mesh::Curve& curve = mesh->curves[pidx - str_offset]; int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]); curve.bounds_grow(k, &mesh->curve_keys[0], bbox); visibility |= PATH_RAY_CURVE; /* motion curves */ if(mesh->use_motion_blur) { Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->curve_keys.size(); size_t steps = mesh->motion_steps - 1; float4 *key_steps = attr->data_float4(); for (size_t i = 0; i < steps; i++) curve.bounds_grow(k, key_steps + i*mesh_size, bbox); } } } else { /* triangles */ int tri_offset = (params.top_level)? mesh->tri_offset: 0; const Mesh::Triangle& triangle = mesh->triangles[pidx - tri_offset]; const float3 *vpos = &mesh->verts[0]; triangle.bounds_grow(vpos, bbox); /* motion triangles */ if(mesh->use_motion_blur) { Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->verts.size(); size_t steps = mesh->motion_steps - 1; float3 *vert_steps = attr->data_float3(); for (size_t i = 0; i < steps; i++) triangle.bounds_grow(vert_steps + i*mesh_size, bbox); } } } } visibility |= ob->visibility; } pack_node(idx, bbox, bbox, c0, c1, visibility, data[3].w); } else { /* refit inner node, set bbox from children */ BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty; uint visibility0 = 0, visibility1 = 0; refit_node((c0 < 0)? -c0-1: c0, (c0 < 0), bbox0, visibility0); refit_node((c1 < 0)? -c1-1: c1, (c1 < 0), bbox1, visibility1); pack_node(idx, bbox0, bbox1, c0, c1, visibility0, visibility1); bbox.grow(bbox0); bbox.grow(bbox1); visibility = visibility0|visibility1; } } /* QBVH */ QBVH::QBVH(const BVHParams& params_, const vector& objects_) : BVH(params_, objects_) { params.use_qbvh = true; } void QBVH::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf) { float4 data[BVH_QNODE_SIZE]; memset(data, 0, sizeof(data)); if(leaf->num_triangles() == 1 && pack.prim_index[leaf->m_lo] == -1) { /* object */ data[6].x = __int_as_float(~(leaf->m_lo)); data[6].y = __int_as_float(0); } else { /* triangle */ data[6].x = __int_as_float(leaf->m_lo); data[6].y = __int_as_float(leaf->m_hi); } data[6].z = __uint_as_float(leaf->m_visibility); if(leaf->num_triangles() != 0) { data[6].w = __uint_as_float(pack.prim_type[leaf->m_lo]); } memcpy(&pack.nodes[e.idx * BVH_QNODE_SIZE], data, sizeof(float4)*BVH_QNODE_SIZE); } void QBVH::pack_inner(const BVHStackEntry& e, const BVHStackEntry *en, int num) { float4 data[BVH_QNODE_SIZE]; for(int i = 0; i < num; i++) { float3 bb_min = en[i].node->m_bounds.min; float3 bb_max = en[i].node->m_bounds.max; data[0][i] = bb_min.x; data[1][i] = bb_max.x; data[2][i] = bb_min.y; data[3][i] = bb_max.y; data[4][i] = bb_min.z; data[5][i] = bb_max.z; data[6][i] = __int_as_float(en[i].encodeIdx()); } for(int i = num; i < 4; i++) { /* We store BB which would never be recorded as intersection * so kernel might safely assume there are always 4 child nodes. */ data[0][i] = FLT_MAX; data[1][i] = -FLT_MAX; data[2][i] = FLT_MAX; data[3][i] = -FLT_MAX; data[4][i] = FLT_MAX; data[5][i] = -FLT_MAX; data[6][i] = __int_as_float(0); } memcpy(&pack.nodes[e.idx * BVH_QNODE_SIZE], data, sizeof(float4)*BVH_QNODE_SIZE); } /* Quad SIMD Nodes */ void QBVH::pack_nodes(const BVHNode *root) { size_t node_size = root->getSubtreeSize(BVH_STAT_QNODE_COUNT); /* resize arrays */ pack.nodes.clear(); pack.is_leaf.clear(); pack.is_leaf.resize(node_size); /* for top level BVH, first merge existing BVH's so we know the offsets */ if(params.top_level) pack_instances(node_size*BVH_QNODE_SIZE); else pack.nodes.resize(node_size*BVH_QNODE_SIZE); int nextNodeIdx = 0; vector stack; stack.reserve(BVHParams::MAX_DEPTH*2); stack.push_back(BVHStackEntry(root, nextNodeIdx++)); while(stack.size()) { BVHStackEntry e = stack.back(); stack.pop_back(); pack.is_leaf[e.idx] = e.node->is_leaf(); if(e.node->is_leaf()) { /* leaf node */ const LeafNode* leaf = reinterpret_cast(e.node); pack_leaf(e, leaf); } else { /* inner node */ const BVHNode *node = e.node; const BVHNode *node0 = node->get_child(0); const BVHNode *node1 = node->get_child(1); /* collect nodes */ const BVHNode *nodes[4]; int numnodes = 0; if(node0->is_leaf()) { nodes[numnodes++] = node0; } else { nodes[numnodes++] = node0->get_child(0); nodes[numnodes++] = node0->get_child(1); } if(node1->is_leaf()) { nodes[numnodes++] = node1; } else { nodes[numnodes++] = node1->get_child(0); nodes[numnodes++] = node1->get_child(1); } /* push entries on the stack */ for(int i = 0; i < numnodes; i++) stack.push_back(BVHStackEntry(nodes[i], nextNodeIdx++)); /* set node */ pack_inner(e, &stack[stack.size()-numnodes], numnodes); } } /* root index to start traversal at, to handle case of single leaf node */ pack.root_index = (pack.is_leaf[0])? -1: 0; } void QBVH::refit_nodes() { assert(!params.top_level); BoundBox bbox = BoundBox::empty; uint visibility = 0; refit_node(0, (pack.is_leaf[0])? true: false, bbox, visibility); } void QBVH::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility) { int4 *data = &pack.nodes[idx*BVH_QNODE_SIZE]; int4 c = data[6]; if(leaf) { /* Refit leaf node. */ for(int prim = c.x; prim < c.y; prim++) { int pidx = pack.prim_index[prim]; int tob = pack.prim_object[prim]; Object *ob = objects[tob]; if(pidx == -1) { /* Object instance. */ bbox.grow(ob->bounds); } else { /* Primitives. */ const Mesh *mesh = ob->mesh; if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) { /* Curves. */ int str_offset = (params.top_level)? mesh->curve_offset: 0; const Mesh::Curve& curve = mesh->curves[pidx - str_offset]; int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]); curve.bounds_grow(k, &mesh->curve_keys[0], bbox); visibility |= PATH_RAY_CURVE; /* Motion curves. */ if(mesh->use_motion_blur) { Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->curve_keys.size(); size_t steps = mesh->motion_steps - 1; float4 *key_steps = attr->data_float4(); for (size_t i = 0; i < steps; i++) curve.bounds_grow(k, key_steps + i*mesh_size, bbox); } } } else { /* Triangles. */ int tri_offset = (params.top_level)? mesh->tri_offset: 0; const Mesh::Triangle& triangle = mesh->triangles[pidx - tri_offset]; const float3 *vpos = &mesh->verts[0]; triangle.bounds_grow(vpos, bbox); /* Motion triangles. */ if(mesh->use_motion_blur) { Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->verts.size(); size_t steps = mesh->motion_steps - 1; float3 *vert_steps = attr->data_float3(); for (size_t i = 0; i < steps; i++) triangle.bounds_grow(vert_steps + i*mesh_size, bbox); } } } } visibility |= ob->visibility; } /* TODO(sergey): This is actually a copy of pack_leaf(), * but this chunk of code only knows actual data and has * no idea about BVHNode. * * Would be nice to de-duplicate code, but trying to make * making code more general ends up in much nastier code * in my opinion so far. * * Same applies to the inner nodes case below. */ float4 leaf_data[BVH_QNODE_SIZE]; memset(leaf_data, 0, sizeof(leaf_data)); leaf_data[6].x = __int_as_float(c.x); leaf_data[6].y = __int_as_float(c.y); leaf_data[6].z = __uint_as_float(visibility); leaf_data[6].w = __uint_as_float(c.w); memcpy(&pack.nodes[idx * BVH_QNODE_SIZE], leaf_data, sizeof(float4)*BVH_QNODE_SIZE); } else { /* Refit inner node, set bbox from children. */ BoundBox child_bbox[4] = {BoundBox::empty, BoundBox::empty, BoundBox::empty, BoundBox::empty}; uint child_visibility[4] = {0}; int num_nodes = 0; for(int i = 0; i < 4; ++i) { if(c[i] != 0) { refit_node((c[i] < 0)? -c[i]-1: c[i], (c[i] < 0), child_bbox[i], child_visibility[i]); ++num_nodes; bbox.grow(child_bbox[i]); visibility |= child_visibility[i]; } } float4 inner_data[BVH_QNODE_SIZE]; for(int i = 0; i < 4; ++i) { float3 bb_min = child_bbox[i].min; float3 bb_max = child_bbox[i].max; inner_data[0][i] = bb_min.x; inner_data[1][i] = bb_max.x; inner_data[2][i] = bb_min.y; inner_data[3][i] = bb_max.y; inner_data[4][i] = bb_min.z; inner_data[5][i] = bb_max.z; inner_data[6][i] = __int_as_float(c[i]); } memcpy(&pack.nodes[idx * BVH_QNODE_SIZE], inner_data, sizeof(float4)*BVH_QNODE_SIZE); } } CCL_NAMESPACE_END