/* * Adapted from code copyright 2009-2010 NVIDIA Corporation * Modifications Copyright 2011, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bvh/bvh2.h" #include "render/mesh.h" #include "render/object.h" #include "bvh/bvh_node.h" #include "bvh/bvh_unaligned.h" CCL_NAMESPACE_BEGIN static bool node_bvh_is_unaligned(const BVHNode *node) { const BVHNode *node0 = node->get_child(0), *node1 = node->get_child(1); return node0->is_unaligned || node1->is_unaligned; } BVH2::BVH2(const BVHParams& params_, const vector& objects_) : BVH(params_, objects_) { } void BVH2::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf) { assert(e.idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size()); float4 data[BVH_NODE_LEAF_SIZE]; memset(data, 0, sizeof(data)); if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) { /* object */ data[0].x = __int_as_float(~(leaf->lo)); data[0].y = __int_as_float(0); } else { /* triangle */ data[0].x = __int_as_float(leaf->lo); data[0].y = __int_as_float(leaf->hi); } data[0].z = __uint_as_float(leaf->visibility); if(leaf->num_triangles() != 0) { data[0].w = __uint_as_float(pack.prim_type[leaf->lo]); } memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_NODE_LEAF_SIZE); } void BVH2::pack_inner(const BVHStackEntry& e, const BVHStackEntry& e0, const BVHStackEntry& e1) { if(e0.node->is_unaligned || e1.node->is_unaligned) { pack_unaligned_inner(e, e0, e1); } else { pack_aligned_inner(e, e0, e1); } } void BVH2::pack_aligned_inner(const BVHStackEntry& e, const BVHStackEntry& e0, const BVHStackEntry& e1) { pack_aligned_node(e.idx, e0.node->bounds, e1.node->bounds, e0.encodeIdx(), e1.encodeIdx(), e0.node->visibility, e1.node->visibility); } void BVH2::pack_aligned_node(int idx, const BoundBox& b0, const BoundBox& b1, int c0, int c1, uint visibility0, uint visibility1) { assert(idx + BVH_NODE_SIZE <= pack.nodes.size()); assert(c0 < 0 || c0 < pack.nodes.size()); assert(c1 < 0 || c1 < pack.nodes.size()); int4 data[BVH_NODE_SIZE] = { make_int4(visibility0 & ~PATH_RAY_NODE_UNALIGNED, visibility1 & ~PATH_RAY_NODE_UNALIGNED, c0, c1), make_int4(__float_as_int(b0.min.x), __float_as_int(b1.min.x), __float_as_int(b0.max.x), __float_as_int(b1.max.x)), make_int4(__float_as_int(b0.min.y), __float_as_int(b1.min.y), __float_as_int(b0.max.y), __float_as_int(b1.max.y)), make_int4(__float_as_int(b0.min.z), __float_as_int(b1.min.z), __float_as_int(b0.max.z), __float_as_int(b1.max.z)), }; memcpy(&pack.nodes[idx], data, sizeof(int4)*BVH_NODE_SIZE); } void BVH2::pack_unaligned_inner(const BVHStackEntry& e, const BVHStackEntry& e0, const BVHStackEntry& e1) { pack_unaligned_node(e.idx, e0.node->get_aligned_space(), e1.node->get_aligned_space(), e0.node->bounds, e1.node->bounds, e0.encodeIdx(), e1.encodeIdx(), e0.node->visibility, e1.node->visibility); } void BVH2::pack_unaligned_node(int idx, const Transform& aligned_space0, const Transform& aligned_space1, const BoundBox& bounds0, const BoundBox& bounds1, int c0, int c1, uint visibility0, uint visibility1) { assert(idx + BVH_UNALIGNED_NODE_SIZE <= pack.nodes.size()); assert(c0 < 0 || c0 < pack.nodes.size()); assert(c1 < 0 || c1 < pack.nodes.size()); float4 data[BVH_UNALIGNED_NODE_SIZE]; Transform space0 = BVHUnaligned::compute_node_transform(bounds0, aligned_space0); Transform space1 = BVHUnaligned::compute_node_transform(bounds1, aligned_space1); data[0] = make_float4(__int_as_float(visibility0 | PATH_RAY_NODE_UNALIGNED), __int_as_float(visibility1 | PATH_RAY_NODE_UNALIGNED), __int_as_float(c0), __int_as_float(c1)); data[1] = space0.x; data[2] = space0.y; data[3] = space0.z; data[4] = space1.x; data[5] = space1.y; data[6] = space1.z; memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_NODE_SIZE); } void BVH2::pack_nodes(const BVHNode *root) { const size_t num_nodes = root->getSubtreeSize(BVH_STAT_NODE_COUNT); const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT); assert(num_leaf_nodes <= num_nodes); const size_t num_inner_nodes = num_nodes - num_leaf_nodes; size_t node_size; if(params.use_unaligned_nodes) { const size_t num_unaligned_nodes = root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_COUNT); node_size = (num_unaligned_nodes * BVH_UNALIGNED_NODE_SIZE) + (num_inner_nodes - num_unaligned_nodes) * BVH_NODE_SIZE; } else { node_size = num_inner_nodes * BVH_NODE_SIZE; } /* Resize arrays */ pack.nodes.clear(); pack.leaf_nodes.clear(); /* For top level BVH, first merge existing BVH's so we know the offsets. */ if(params.top_level) { pack_instances(node_size, num_leaf_nodes*BVH_NODE_LEAF_SIZE); } else { pack.nodes.resize(node_size); pack.leaf_nodes.resize(num_leaf_nodes*BVH_NODE_LEAF_SIZE); } int nextNodeIdx = 0, nextLeafNodeIdx = 0; vector stack; stack.reserve(BVHParams::MAX_DEPTH*2); if(root->is_leaf()) { stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++)); } else { stack.push_back(BVHStackEntry(root, nextNodeIdx)); nextNodeIdx += node_bvh_is_unaligned(root) ? BVH_UNALIGNED_NODE_SIZE : BVH_NODE_SIZE; } while(stack.size()) { BVHStackEntry e = stack.back(); stack.pop_back(); if(e.node->is_leaf()) { /* leaf node */ const LeafNode *leaf = reinterpret_cast(e.node); pack_leaf(e, leaf); } else { /* innner node */ int idx[2]; for(int i = 0; i < 2; ++i) { if(e.node->get_child(i)->is_leaf()) { idx[i] = nextLeafNodeIdx++; } else { idx[i] = nextNodeIdx; nextNodeIdx += node_bvh_is_unaligned(e.node->get_child(i)) ? BVH_UNALIGNED_NODE_SIZE : BVH_NODE_SIZE; } } stack.push_back(BVHStackEntry(e.node->get_child(0), idx[0])); stack.push_back(BVHStackEntry(e.node->get_child(1), idx[1])); pack_inner(e, stack[stack.size()-2], stack[stack.size()-1]); } } assert(node_size == nextNodeIdx); /* root index to start traversal at, to handle case of single leaf node */ pack.root_index = (root->is_leaf())? -1: 0; } void BVH2::refit_nodes() { assert(!params.top_level); BoundBox bbox = BoundBox::empty; uint visibility = 0; refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility); } void BVH2::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility) { if(leaf) { assert(idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size()); const int4 *data = &pack.leaf_nodes[idx]; const int c0 = data[0].x; const int c1 = data[0].y; /* refit leaf node */ for(int prim = c0; prim < c1; prim++) { int pidx = pack.prim_index[prim]; int tob = pack.prim_object[prim]; Object *ob = objects[tob]; if(pidx == -1) { /* object instance */ bbox.grow(ob->bounds); } else { /* primitives */ const Mesh *mesh = ob->mesh; if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) { /* curves */ int str_offset = (params.top_level)? mesh->curve_offset: 0; Mesh::Curve curve = mesh->get_curve(pidx - str_offset); int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]); curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox); visibility |= PATH_RAY_CURVE; /* motion curves */ if(mesh->use_motion_blur) { Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->curve_keys.size(); size_t steps = mesh->motion_steps - 1; float3 *key_steps = attr->data_float3(); for(size_t i = 0; i < steps; i++) curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox); } } } else { /* triangles */ int tri_offset = (params.top_level)? mesh->tri_offset: 0; Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset); const float3 *vpos = &mesh->verts[0]; triangle.bounds_grow(vpos, bbox); /* motion triangles */ if(mesh->use_motion_blur) { Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t mesh_size = mesh->verts.size(); size_t steps = mesh->motion_steps - 1; float3 *vert_steps = attr->data_float3(); for(size_t i = 0; i < steps; i++) triangle.bounds_grow(vert_steps + i*mesh_size, bbox); } } } } visibility |= ob->visibility_for_tracing(); } /* TODO(sergey): De-duplicate with pack_leaf(). */ float4 leaf_data[BVH_NODE_LEAF_SIZE]; leaf_data[0].x = __int_as_float(c0); leaf_data[0].y = __int_as_float(c1); leaf_data[0].z = __uint_as_float(visibility); leaf_data[0].w = __uint_as_float(data[0].w); memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_NODE_LEAF_SIZE); } else { assert(idx + BVH_NODE_SIZE <= pack.nodes.size()); const int4 *data = &pack.nodes[idx]; const bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0; const int c0 = data[0].z; const int c1 = data[0].w; /* refit inner node, set bbox from children */ BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty; uint visibility0 = 0, visibility1 = 0; refit_node((c0 < 0)? -c0-1: c0, (c0 < 0), bbox0, visibility0); refit_node((c1 < 0)? -c1-1: c1, (c1 < 0), bbox1, visibility1); if(is_unaligned) { Transform aligned_space = transform_identity(); pack_unaligned_node(idx, aligned_space, aligned_space, bbox0, bbox1, c0, c1, visibility0, visibility1); } else { pack_aligned_node(idx, bbox0, bbox1, c0, c1, visibility0, visibility1); } bbox.grow(bbox0); bbox.grow(bbox1); visibility = visibility0|visibility1; } } CCL_NAMESPACE_END