/* * Copyright 2018, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This class implements a ray accelerator for Cycles using Intel's Embree library. * It supports triangles, curves, object and deformation blur and instancing. * * Since Embree allows object to be either curves or triangles but not both, Cycles object IDs are * mapped to Embree IDs by multiplying by two and adding one for curves. * * This implementation shares RTCDevices between Cycles instances. Eventually each instance should * get a separate RTCDevice to correctly keep track of memory usage. * * Vertex and index buffers are duplicated between Cycles device arrays and Embree. These could be * merged, which would require changes to intersection refinement, shader setup, mesh light * sampling and a few other places in Cycles where direct access to vertex data is required. */ #ifdef WITH_EMBREE # include # include # include # include "bvh/bvh_embree.h" /* Kernel includes are necessary so that the filter function for Embree can access the packed BVH. */ # include "kernel/bvh/bvh_embree.h" # include "kernel/kernel_compat_cpu.h" # include "kernel/kernel_globals.h" # include "kernel/kernel_random.h" # include "kernel/split/kernel_split_data_types.h" # include "render/hair.h" # include "render/mesh.h" # include "render/object.h" # include "util/util_foreach.h" # include "util/util_logging.h" # include "util/util_progress.h" # include "util/util_stats.h" CCL_NAMESPACE_BEGIN static_assert(Object::MAX_MOTION_STEPS <= RTC_MAX_TIME_STEP_COUNT, "Object and Embree max motion steps inconsistent"); static_assert(Object::MAX_MOTION_STEPS == Geometry::MAX_MOTION_STEPS, "Object and Geometry max motion steps inconsistent"); # define IS_HAIR(x) (x & 1) /* This gets called by Embree at every valid ray/object intersection. * Things like recording subsurface or shadow hits for later evaluation * as well as filtering for volume objects happen here. * Cycles' own BVH does that directly inside the traversal calls. */ static void rtc_filter_occluded_func(const RTCFilterFunctionNArguments *args) { /* Current implementation in Cycles assumes only single-ray intersection queries. */ assert(args->N == 1); const RTCRay *ray = (RTCRay *)args->ray; RTCHit *hit = (RTCHit *)args->hit; CCLIntersectContext *ctx = ((IntersectContext *)args->context)->userRayExt; KernelGlobals *kg = ctx->kg; switch (ctx->type) { case CCLIntersectContext::RAY_SHADOW_ALL: { /* Append the intersection to the end of the array. */ if (ctx->num_hits < ctx->max_hits) { Intersection current_isect; kernel_embree_convert_hit(kg, ray, hit, ¤t_isect); for (size_t i = 0; i < ctx->max_hits; ++i) { if (current_isect.object == ctx->isect_s[i].object && current_isect.prim == ctx->isect_s[i].prim && current_isect.t == ctx->isect_s[i].t) { /* This intersection was already recorded, skip it. */ *args->valid = 0; break; } } Intersection *isect = &ctx->isect_s[ctx->num_hits]; ++ctx->num_hits; *isect = current_isect; int prim = kernel_tex_fetch(__prim_index, isect->prim); int shader = 0; if (kernel_tex_fetch(__prim_type, isect->prim) & PRIMITIVE_ALL_TRIANGLE) { shader = kernel_tex_fetch(__tri_shader, prim); } else { float4 str = kernel_tex_fetch(__curves, prim); shader = __float_as_int(str.z); } int flag = kernel_tex_fetch(__shaders, shader & SHADER_MASK).flags; /* If no transparent shadows, all light is blocked. */ if (flag & (SD_HAS_TRANSPARENT_SHADOW)) { /* This tells Embree to continue tracing. */ *args->valid = 0; } } else { /* Increase the number of hits beyond ray.max_hits * so that the caller can detect this as opaque. */ ++ctx->num_hits; } break; } case CCLIntersectContext::RAY_LOCAL: case CCLIntersectContext::RAY_SSS: { /* Check if it's hitting the correct object. */ Intersection current_isect; if (ctx->type == CCLIntersectContext::RAY_SSS) { kernel_embree_convert_sss_hit(kg, ray, hit, ¤t_isect, ctx->local_object_id); } else { kernel_embree_convert_hit(kg, ray, hit, ¤t_isect); int object = (current_isect.object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, current_isect.prim) : current_isect.object; if (ctx->local_object_id != object) { /* This tells Embree to continue tracing. */ *args->valid = 0; break; } } /* No intersection information requested, just return a hit. */ if (ctx->max_hits == 0) { break; } /* Ignore curves. */ if (IS_HAIR(hit->geomID)) { /* This tells Embree to continue tracing. */ *args->valid = 0; break; } /* See triangle_intersect_subsurface() for the native equivalent. */ for (int i = min(ctx->max_hits, ctx->local_isect->num_hits) - 1; i >= 0; --i) { if (ctx->local_isect->hits[i].t == ray->tfar) { /* This tells Embree to continue tracing. */ *args->valid = 0; break; } } int hit_idx = 0; if (ctx->lcg_state) { ++ctx->local_isect->num_hits; if (ctx->local_isect->num_hits <= ctx->max_hits) { hit_idx = ctx->local_isect->num_hits - 1; } else { /* reservoir sampling: if we are at the maximum number of * hits, randomly replace element or skip it */ hit_idx = lcg_step_uint(ctx->lcg_state) % ctx->local_isect->num_hits; if (hit_idx >= ctx->max_hits) { /* This tells Embree to continue tracing. */ *args->valid = 0; break; } } } else { ctx->local_isect->num_hits = 1; } /* record intersection */ ctx->local_isect->hits[hit_idx] = current_isect; ctx->local_isect->Ng[hit_idx] = normalize(make_float3(hit->Ng_x, hit->Ng_y, hit->Ng_z)); /* This tells Embree to continue tracing .*/ *args->valid = 0; break; } case CCLIntersectContext::RAY_VOLUME_ALL: { /* Append the intersection to the end of the array. */ if (ctx->num_hits < ctx->max_hits) { Intersection current_isect; kernel_embree_convert_hit(kg, ray, hit, ¤t_isect); for (size_t i = 0; i < ctx->max_hits; ++i) { if (current_isect.object == ctx->isect_s[i].object && current_isect.prim == ctx->isect_s[i].prim && current_isect.t == ctx->isect_s[i].t) { /* This intersection was already recorded, skip it. */ *args->valid = 0; break; } } Intersection *isect = &ctx->isect_s[ctx->num_hits]; ++ctx->num_hits; *isect = current_isect; /* Only primitives from volume object. */ uint tri_object = (isect->object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, isect->prim) : isect->object; int object_flag = kernel_tex_fetch(__object_flag, tri_object); if ((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { --ctx->num_hits; } /* This tells Embree to continue tracing. */ *args->valid = 0; break; } } case CCLIntersectContext::RAY_REGULAR: default: /* Nothing to do here. */ break; } } static void rtc_filter_func_thick_curve(const RTCFilterFunctionNArguments *args) { const RTCRay *ray = (RTCRay *)args->ray; RTCHit *hit = (RTCHit *)args->hit; /* Always ignore backfacing intersections. */ if (dot(make_float3(ray->dir_x, ray->dir_y, ray->dir_z), make_float3(hit->Ng_x, hit->Ng_y, hit->Ng_z)) > 0.0f) { *args->valid = 0; return; } } static void rtc_filter_occluded_func_thick_curve(const RTCFilterFunctionNArguments *args) { const RTCRay *ray = (RTCRay *)args->ray; RTCHit *hit = (RTCHit *)args->hit; /* Always ignore backfacing intersections. */ if (dot(make_float3(ray->dir_x, ray->dir_y, ray->dir_z), make_float3(hit->Ng_x, hit->Ng_y, hit->Ng_z)) > 0.0f) { *args->valid = 0; return; } rtc_filter_occluded_func(args); } static size_t unaccounted_mem = 0; static bool rtc_memory_monitor_func(void *userPtr, const ssize_t bytes, const bool) { Stats *stats = (Stats *)userPtr; if (stats) { if (bytes > 0) { stats->mem_alloc(bytes); } else { stats->mem_free(-bytes); } } else { /* A stats pointer may not yet be available. Keep track of the memory usage for later. */ if (bytes >= 0) { atomic_add_and_fetch_z(&unaccounted_mem, bytes); } else { atomic_sub_and_fetch_z(&unaccounted_mem, -bytes); } } return true; } static void rtc_error_func(void *, enum RTCError, const char *str) { VLOG(1) << str; } static double progress_start_time = 0.0f; static bool rtc_progress_func(void *user_ptr, const double n) { Progress *progress = (Progress *)user_ptr; if (time_dt() - progress_start_time < 0.25) { return true; } string msg = string_printf("Building BVH %.0f%%", n * 100.0); progress->set_substatus(msg); progress_start_time = time_dt(); return !progress->get_cancel(); } static size_t count_primitives(Geometry *geom) { if (geom->type == Geometry::MESH || geom->type == Geometry::VOLUME) { Mesh *mesh = static_cast(geom); return mesh->num_triangles(); } else if (geom->type == Geometry::HAIR) { Hair *hair = static_cast(geom); return hair->num_segments(); } return 0; } BVHEmbree::BVHEmbree(const BVHParams ¶ms_, const vector &geometry_, const vector &objects_, const Device *device) : BVH(params_, geometry_, objects_), scene(NULL), mem_used(0), top_level(NULL), rtc_device((RTCDevice)device->bvh_device()), stats(NULL), curve_subdivisions(params.curve_subdivisions), build_quality(RTC_BUILD_QUALITY_REFIT), dynamic_scene(true) { _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); rtcSetDeviceErrorFunction(rtc_device, rtc_error_func, NULL); pack.root_index = -1; } BVHEmbree::~BVHEmbree() { if (!params.top_level) { destroy(scene); } } void BVHEmbree::destroy(RTCScene scene) { if (scene) { rtcReleaseScene(scene); scene = NULL; } } void BVHEmbree::delete_rtcScene() { if (scene) { /* When this BVH is used as an instance in a top level BVH, don't delete now * Let the top_level BVH know that it should delete it later. */ if (top_level) { top_level->add_delayed_delete_scene(scene); } else { rtcReleaseScene(scene); if (delayed_delete_scenes.size()) { foreach (RTCScene s, delayed_delete_scenes) { rtcReleaseScene(s); } } delayed_delete_scenes.clear(); } scene = NULL; } } void BVHEmbree::build(Progress &progress, Stats *stats_) { assert(rtc_device); stats = stats_; rtcSetDeviceMemoryMonitorFunction(rtc_device, rtc_memory_monitor_func, stats); progress.set_substatus("Building BVH"); if (scene) { rtcReleaseScene(scene); scene = NULL; } const bool dynamic = params.bvh_type == SceneParams::BVH_DYNAMIC; scene = rtcNewScene(rtc_device); const RTCSceneFlags scene_flags = (dynamic ? RTC_SCENE_FLAG_DYNAMIC : RTC_SCENE_FLAG_NONE) | RTC_SCENE_FLAG_COMPACT | RTC_SCENE_FLAG_ROBUST; rtcSetSceneFlags(scene, scene_flags); build_quality = dynamic ? RTC_BUILD_QUALITY_LOW : (params.use_spatial_split ? RTC_BUILD_QUALITY_HIGH : RTC_BUILD_QUALITY_MEDIUM); rtcSetSceneBuildQuality(scene, build_quality); /* Count triangles and curves first, reserve arrays once. */ size_t prim_count = 0; foreach (Object *ob, objects) { if (params.top_level) { if (!ob->is_traceable()) { continue; } if (!ob->geometry->is_instanced()) { prim_count += count_primitives(ob->geometry); } else { ++prim_count; } } else { prim_count += count_primitives(ob->geometry); } } pack.prim_object.reserve(prim_count); pack.prim_type.reserve(prim_count); pack.prim_index.reserve(prim_count); pack.prim_tri_index.reserve(prim_count); int i = 0; pack.object_node.clear(); foreach (Object *ob, objects) { if (params.top_level) { if (!ob->is_traceable()) { ++i; continue; } if (!ob->geometry->is_instanced()) { add_object(ob, i); } else { add_instance(ob, i); } } else { add_object(ob, i); } ++i; if (progress.get_cancel()) return; } if (progress.get_cancel()) { delete_rtcScene(); stats = NULL; return; } rtcSetSceneProgressMonitorFunction(scene, rtc_progress_func, &progress); rtcCommitScene(scene); pack_primitives(); if (progress.get_cancel()) { delete_rtcScene(); stats = NULL; return; } progress.set_substatus("Packing geometry"); pack_nodes(NULL); stats = NULL; } void BVHEmbree::copy_to_device(Progress & /*progress*/, DeviceScene *dscene) { dscene->data.bvh.scene = scene; } BVHNode *BVHEmbree::widen_children_nodes(const BVHNode * /*root*/) { assert(!"Must not be called."); return NULL; } void BVHEmbree::add_object(Object *ob, int i) { Geometry *geom = ob->geometry; if (geom->type == Geometry::MESH || geom->type == Geometry::VOLUME) { Mesh *mesh = static_cast(geom); if (mesh->num_triangles() > 0) { add_triangles(ob, mesh, i); } } else if (geom->type == Geometry::HAIR) { Hair *hair = static_cast(geom); if (hair->num_curves() > 0) { add_curves(ob, hair, i); } } } void BVHEmbree::add_instance(Object *ob, int i) { if (!ob || !ob->geometry) { assert(0); return; } BVHEmbree *instance_bvh = (BVHEmbree *)(ob->geometry->bvh); if (instance_bvh->top_level != this) { instance_bvh->top_level = this; } const size_t num_object_motion_steps = ob->use_motion() ? ob->motion.size() : 1; const size_t num_motion_steps = min(num_object_motion_steps, RTC_MAX_TIME_STEP_COUNT); assert(num_object_motion_steps <= RTC_MAX_TIME_STEP_COUNT); RTCGeometry geom_id = rtcNewGeometry(rtc_device, RTC_GEOMETRY_TYPE_INSTANCE); rtcSetGeometryInstancedScene(geom_id, instance_bvh->scene); rtcSetGeometryTimeStepCount(geom_id, num_motion_steps); if (ob->use_motion()) { array decomp(ob->motion.size()); transform_motion_decompose(decomp.data(), ob->motion.data(), ob->motion.size()); for (size_t step = 0; step < num_motion_steps; ++step) { RTCQuaternionDecomposition rtc_decomp; rtcInitQuaternionDecomposition(&rtc_decomp); rtcQuaternionDecompositionSetQuaternion( &rtc_decomp, decomp[step].x.w, decomp[step].x.x, decomp[step].x.y, decomp[step].x.z); rtcQuaternionDecompositionSetScale( &rtc_decomp, decomp[step].y.w, decomp[step].z.w, decomp[step].w.w); rtcQuaternionDecompositionSetTranslation( &rtc_decomp, decomp[step].y.x, decomp[step].y.y, decomp[step].y.z); rtcQuaternionDecompositionSetSkew( &rtc_decomp, decomp[step].z.x, decomp[step].z.y, decomp[step].w.x); rtcSetGeometryTransformQuaternion(geom_id, step, &rtc_decomp); } } else { rtcSetGeometryTransform(geom_id, 0, RTC_FORMAT_FLOAT3X4_ROW_MAJOR, (const float *)&ob->tfm); } pack.prim_index.push_back_slow(-1); pack.prim_object.push_back_slow(i); pack.prim_type.push_back_slow(PRIMITIVE_NONE); pack.prim_tri_index.push_back_slow(-1); rtcSetGeometryUserData(geom_id, (void *)instance_bvh->scene); rtcSetGeometryMask(geom_id, ob->visibility_for_tracing()); rtcCommitGeometry(geom_id); rtcAttachGeometryByID(scene, geom_id, i * 2); rtcReleaseGeometry(geom_id); } void BVHEmbree::add_triangles(const Object *ob, const Mesh *mesh, int i) { size_t prim_offset = pack.prim_index.size(); const Attribute *attr_mP = NULL; size_t num_geometry_motion_steps = 1; if (mesh->has_motion_blur()) { attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (attr_mP) { num_geometry_motion_steps = mesh->motion_steps; } } const size_t num_motion_steps = min(num_geometry_motion_steps, RTC_MAX_TIME_STEP_COUNT); assert(num_geometry_motion_steps <= RTC_MAX_TIME_STEP_COUNT); const size_t num_triangles = mesh->num_triangles(); RTCGeometry geom_id = rtcNewGeometry(rtc_device, RTC_GEOMETRY_TYPE_TRIANGLE); rtcSetGeometryBuildQuality(geom_id, build_quality); rtcSetGeometryTimeStepCount(geom_id, num_motion_steps); unsigned *rtc_indices = (unsigned *)rtcSetNewGeometryBuffer( geom_id, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, sizeof(int) * 3, num_triangles); assert(rtc_indices); if (!rtc_indices) { VLOG(1) << "Embree could not create new geometry buffer for mesh " << mesh->name.c_str() << ".\n"; return; } for (size_t j = 0; j < num_triangles; ++j) { Mesh::Triangle t = mesh->get_triangle(j); rtc_indices[j * 3] = t.v[0]; rtc_indices[j * 3 + 1] = t.v[1]; rtc_indices[j * 3 + 2] = t.v[2]; } set_tri_vertex_buffer(geom_id, mesh, false); size_t prim_object_size = pack.prim_object.size(); pack.prim_object.resize(prim_object_size + num_triangles); size_t prim_type_size = pack.prim_type.size(); pack.prim_type.resize(prim_type_size + num_triangles); size_t prim_index_size = pack.prim_index.size(); pack.prim_index.resize(prim_index_size + num_triangles); pack.prim_tri_index.resize(prim_index_size + num_triangles); int prim_type = (num_motion_steps > 1 ? PRIMITIVE_MOTION_TRIANGLE : PRIMITIVE_TRIANGLE); for (size_t j = 0; j < num_triangles; ++j) { pack.prim_object[prim_object_size + j] = i; pack.prim_type[prim_type_size + j] = prim_type; pack.prim_index[prim_index_size + j] = j; pack.prim_tri_index[prim_index_size + j] = j; } rtcSetGeometryUserData(geom_id, (void *)prim_offset); rtcSetGeometryOccludedFilterFunction(geom_id, rtc_filter_occluded_func); rtcSetGeometryMask(geom_id, ob->visibility_for_tracing()); rtcCommitGeometry(geom_id); rtcAttachGeometryByID(scene, geom_id, i * 2); rtcReleaseGeometry(geom_id); } void BVHEmbree::set_tri_vertex_buffer(RTCGeometry geom_id, const Mesh *mesh, const bool update) { const Attribute *attr_mP = NULL; size_t num_motion_steps = 1; int t_mid = 0; if (mesh->has_motion_blur()) { attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (attr_mP) { num_motion_steps = mesh->motion_steps; t_mid = (num_motion_steps - 1) / 2; if (num_motion_steps > RTC_MAX_TIME_STEP_COUNT) { assert(0); num_motion_steps = RTC_MAX_TIME_STEP_COUNT; } } } const size_t num_verts = mesh->verts.size(); for (int t = 0; t < num_motion_steps; ++t) { const float3 *verts; if (t == t_mid) { verts = &mesh->verts[0]; } else { int t_ = (t > t_mid) ? (t - 1) : t; verts = &attr_mP->data_float3()[t_ * num_verts]; } float *rtc_verts = (update) ? (float *)rtcGetGeometryBufferData(geom_id, RTC_BUFFER_TYPE_VERTEX, t) : (float *)rtcSetNewGeometryBuffer(geom_id, RTC_BUFFER_TYPE_VERTEX, t, RTC_FORMAT_FLOAT3, sizeof(float) * 3, num_verts + 1); assert(rtc_verts); if (rtc_verts) { for (size_t j = 0; j < num_verts; ++j) { rtc_verts[0] = verts[j].x; rtc_verts[1] = verts[j].y; rtc_verts[2] = verts[j].z; rtc_verts += 3; } } if (update) { rtcUpdateGeometryBuffer(geom_id, RTC_BUFFER_TYPE_VERTEX, t); } } } void BVHEmbree::set_curve_vertex_buffer(RTCGeometry geom_id, const Hair *hair, const bool update) { const Attribute *attr_mP = NULL; size_t num_motion_steps = 1; if (hair->has_motion_blur()) { attr_mP = hair->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (attr_mP) { num_motion_steps = hair->motion_steps; } } const size_t num_curves = hair->num_curves(); size_t num_keys = 0; for (size_t j = 0; j < num_curves; ++j) { const Hair::Curve c = hair->get_curve(j); num_keys += c.num_keys; } /* Catmull-Rom splines need extra CVs at the beginning and end of each curve. */ size_t num_keys_embree = num_keys; num_keys_embree += num_curves * 2; /* Copy the CV data to Embree */ const int t_mid = (num_motion_steps - 1) / 2; const float *curve_radius = &hair->curve_radius[0]; for (int t = 0; t < num_motion_steps; ++t) { const float3 *verts; if (t == t_mid || attr_mP == NULL) { verts = &hair->curve_keys[0]; } else { int t_ = (t > t_mid) ? (t - 1) : t; verts = &attr_mP->data_float3()[t_ * num_keys]; } float4 *rtc_verts = (update) ? (float4 *)rtcGetGeometryBufferData( geom_id, RTC_BUFFER_TYPE_VERTEX, t) : (float4 *)rtcSetNewGeometryBuffer(geom_id, RTC_BUFFER_TYPE_VERTEX, t, RTC_FORMAT_FLOAT4, sizeof(float) * 4, num_keys_embree); assert(rtc_verts); if (rtc_verts) { const size_t num_curves = hair->num_curves(); for (size_t j = 0; j < num_curves; ++j) { Hair::Curve c = hair->get_curve(j); int fk = c.first_key; int k = 1; for (; k < c.num_keys + 1; ++k, ++fk) { rtc_verts[k] = float3_to_float4(verts[fk]); rtc_verts[k].w = curve_radius[fk]; } /* Duplicate Embree's Catmull-Rom spline CVs at the start and end of each curve. */ rtc_verts[0] = rtc_verts[1]; rtc_verts[k] = rtc_verts[k - 1]; rtc_verts += c.num_keys + 2; } } if (update) { rtcUpdateGeometryBuffer(geom_id, RTC_BUFFER_TYPE_VERTEX, t); } } } void BVHEmbree::add_curves(const Object *ob, const Hair *hair, int i) { size_t prim_offset = pack.prim_index.size(); const Attribute *attr_mP = NULL; size_t num_geometry_motion_steps = 1; if (hair->has_motion_blur()) { attr_mP = hair->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (attr_mP) { num_geometry_motion_steps = hair->motion_steps; } } const size_t num_motion_steps = min(num_geometry_motion_steps, RTC_MAX_TIME_STEP_COUNT); const PrimitiveType primitive_type = (num_motion_steps > 1) ? ((hair->curve_shape == CURVE_RIBBON) ? PRIMITIVE_MOTION_CURVE_RIBBON : PRIMITIVE_MOTION_CURVE_THICK) : ((hair->curve_shape == CURVE_RIBBON) ? PRIMITIVE_CURVE_RIBBON : PRIMITIVE_CURVE_THICK); assert(num_geometry_motion_steps <= RTC_MAX_TIME_STEP_COUNT); const size_t num_curves = hair->num_curves(); size_t num_segments = 0; for (size_t j = 0; j < num_curves; ++j) { Hair::Curve c = hair->get_curve(j); assert(c.num_segments() > 0); num_segments += c.num_segments(); } /* Make room for Cycles specific data. */ size_t prim_object_size = pack.prim_object.size(); pack.prim_object.resize(prim_object_size + num_segments); size_t prim_type_size = pack.prim_type.size(); pack.prim_type.resize(prim_type_size + num_segments); size_t prim_index_size = pack.prim_index.size(); pack.prim_index.resize(prim_index_size + num_segments); size_t prim_tri_index_size = pack.prim_index.size(); pack.prim_tri_index.resize(prim_tri_index_size + num_segments); enum RTCGeometryType type = (hair->curve_shape == CURVE_RIBBON ? RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE : RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE); RTCGeometry geom_id = rtcNewGeometry(rtc_device, type); rtcSetGeometryTessellationRate(geom_id, curve_subdivisions + 1); unsigned *rtc_indices = (unsigned *)rtcSetNewGeometryBuffer( geom_id, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, sizeof(int), num_segments); size_t rtc_index = 0; for (size_t j = 0; j < num_curves; ++j) { Hair::Curve c = hair->get_curve(j); for (size_t k = 0; k < c.num_segments(); ++k) { rtc_indices[rtc_index] = c.first_key + k; /* Room for extra CVs at Catmull-Rom splines. */ rtc_indices[rtc_index] += j * 2; /* Cycles specific data. */ pack.prim_object[prim_object_size + rtc_index] = i; pack.prim_type[prim_type_size + rtc_index] = (PRIMITIVE_PACK_SEGMENT(primitive_type, k)); pack.prim_index[prim_index_size + rtc_index] = j; pack.prim_tri_index[prim_tri_index_size + rtc_index] = rtc_index; ++rtc_index; } } rtcSetGeometryBuildQuality(geom_id, build_quality); rtcSetGeometryTimeStepCount(geom_id, num_motion_steps); set_curve_vertex_buffer(geom_id, hair, false); rtcSetGeometryUserData(geom_id, (void *)prim_offset); if (hair->curve_shape == CURVE_RIBBON) { rtcSetGeometryOccludedFilterFunction(geom_id, rtc_filter_occluded_func); } else { rtcSetGeometryIntersectFilterFunction(geom_id, rtc_filter_func_thick_curve); rtcSetGeometryOccludedFilterFunction(geom_id, rtc_filter_occluded_func_thick_curve); } rtcSetGeometryMask(geom_id, ob->visibility_for_tracing()); rtcCommitGeometry(geom_id); rtcAttachGeometryByID(scene, geom_id, i * 2 + 1); rtcReleaseGeometry(geom_id); } void BVHEmbree::pack_nodes(const BVHNode *) { /* Quite a bit of this code is for compatibility with Cycles' native BVH. */ if (!params.top_level) { return; } for (size_t i = 0; i < pack.prim_index.size(); ++i) { if (pack.prim_index[i] != -1) { pack.prim_index[i] += objects[pack.prim_object[i]]->geometry->prim_offset; } } size_t prim_offset = pack.prim_index.size(); /* reserve */ size_t prim_index_size = pack.prim_index.size(); size_t prim_tri_verts_size = pack.prim_tri_verts.size(); size_t pack_prim_index_offset = prim_index_size; size_t pack_prim_tri_verts_offset = prim_tri_verts_size; size_t object_offset = 0; map geometry_map; foreach (Object *ob, objects) { Geometry *geom = ob->geometry; BVH *bvh = geom->bvh; if (geom->need_build_bvh(BVH_LAYOUT_EMBREE)) { if (geometry_map.find(geom) == geometry_map.end()) { prim_index_size += bvh->pack.prim_index.size(); prim_tri_verts_size += bvh->pack.prim_tri_verts.size(); geometry_map[geom] = 1; } } } geometry_map.clear(); pack.prim_index.resize(prim_index_size); pack.prim_type.resize(prim_index_size); pack.prim_object.resize(prim_index_size); pack.prim_visibility.clear(); pack.prim_tri_verts.resize(prim_tri_verts_size); pack.prim_tri_index.resize(prim_index_size); pack.object_node.resize(objects.size()); int *pack_prim_index = (pack.prim_index.size()) ? &pack.prim_index[0] : NULL; int *pack_prim_type = (pack.prim_type.size()) ? &pack.prim_type[0] : NULL; int *pack_prim_object = (pack.prim_object.size()) ? &pack.prim_object[0] : NULL; float4 *pack_prim_tri_verts = (pack.prim_tri_verts.size()) ? &pack.prim_tri_verts[0] : NULL; uint *pack_prim_tri_index = (pack.prim_tri_index.size()) ? &pack.prim_tri_index[0] : NULL; /* merge */ foreach (Object *ob, objects) { Geometry *geom = ob->geometry; /* We assume that if mesh doesn't need own BVH it was already included * into a top-level BVH and no packing here is needed. */ if (!geom->need_build_bvh(BVH_LAYOUT_EMBREE)) { pack.object_node[object_offset++] = prim_offset; continue; } /* if geom already added once, don't add it again, but used set * node offset for this object */ map::iterator it = geometry_map.find(geom); if (geometry_map.find(geom) != geometry_map.end()) { int noffset = it->second; pack.object_node[object_offset++] = noffset; continue; } BVHEmbree *bvh = (BVHEmbree *)geom->bvh; rtc_memory_monitor_func(stats, unaccounted_mem, true); unaccounted_mem = 0; int geom_prim_offset = geom->prim_offset; /* fill in node indexes for instances */ pack.object_node[object_offset++] = prim_offset; geometry_map[geom] = pack.object_node[object_offset - 1]; /* merge primitive, object and triangle indexes */ if (bvh->pack.prim_index.size()) { size_t bvh_prim_index_size = bvh->pack.prim_index.size(); int *bvh_prim_index = &bvh->pack.prim_index[0]; int *bvh_prim_type = &bvh->pack.prim_type[0]; uint *bvh_prim_tri_index = &bvh->pack.prim_tri_index[0]; for (size_t i = 0; i < bvh_prim_index_size; ++i) { if (bvh->pack.prim_type[i] & PRIMITIVE_ALL_CURVE) { pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + geom_prim_offset; pack_prim_tri_index[pack_prim_index_offset] = -1; } else { pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + geom_prim_offset; pack_prim_tri_index[pack_prim_index_offset] = bvh_prim_tri_index[i] + pack_prim_tri_verts_offset; } pack_prim_type[pack_prim_index_offset] = bvh_prim_type[i]; pack_prim_object[pack_prim_index_offset] = 0; ++pack_prim_index_offset; } } /* Merge triangle vertices data. */ if (bvh->pack.prim_tri_verts.size()) { const size_t prim_tri_size = bvh->pack.prim_tri_verts.size(); memcpy(pack_prim_tri_verts + pack_prim_tri_verts_offset, &bvh->pack.prim_tri_verts[0], prim_tri_size * sizeof(float4)); pack_prim_tri_verts_offset += prim_tri_size; } prim_offset += bvh->pack.prim_index.size(); } } void BVHEmbree::refit_nodes() { /* Update all vertex buffers, then tell Embree to rebuild/-fit the BVHs. */ unsigned geom_id = 0; foreach (Object *ob, objects) { if (!params.top_level || (ob->is_traceable() && !ob->geometry->is_instanced())) { Geometry *geom = ob->geometry; if (geom->type == Geometry::MESH || geom->type == Geometry::VOLUME) { Mesh *mesh = static_cast(geom); if (mesh->num_triangles() > 0) { RTCGeometry geom = rtcGetGeometry(scene, geom_id); set_tri_vertex_buffer(geom, mesh, true); rtcCommitGeometry(geom); } } else if (geom->type == Geometry::HAIR) { Hair *hair = static_cast(geom); if (hair->num_curves() > 0) { RTCGeometry geom = rtcGetGeometry(scene, geom_id + 1); set_curve_vertex_buffer(geom, hair, true); rtcCommitGeometry(geom); } } } geom_id += 2; } rtcCommitScene(scene); } CCL_NAMESPACE_END #endif /* WITH_EMBREE */