/* * Adapted from code copyright 2009-2010 NVIDIA Corporation * Modifications Copyright 2011, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bvh_build.h" #include "bvh_split.h" #include "bvh_sort.h" #include "mesh.h" #include "object.h" #include "util_algorithm.h" CCL_NAMESPACE_BEGIN /* Object Split */ BVHObjectSplit::BVHObjectSplit(BVHBuild *builder, const BVHRange& range, float nodeSAH) : sah(FLT_MAX), dim(0), num_left(0), left_bounds(BoundBox::empty), right_bounds(BoundBox::empty) { const BVHReference *ref_ptr = &builder->references[range.start()]; float min_sah = FLT_MAX; for(int dim = 0; dim < 3; dim++) { /* sort references */ bvh_reference_sort(range.start(), range.end(), &builder->references[0], dim); /* sweep right to left and determine bounds. */ BoundBox right_bounds = BoundBox::empty; for(int i = range.size() - 1; i > 0; i--) { right_bounds.grow(ref_ptr[i].bounds()); builder->spatial_right_bounds[i - 1] = right_bounds; } /* sweep left to right and select lowest SAH. */ BoundBox left_bounds = BoundBox::empty; for(int i = 1; i < range.size(); i++) { left_bounds.grow(ref_ptr[i - 1].bounds()); right_bounds = builder->spatial_right_bounds[i - 1]; float sah = nodeSAH + left_bounds.safe_area() * builder->params.primitive_cost(i) + right_bounds.safe_area() * builder->params.primitive_cost(range.size() - i); if(sah < min_sah) { min_sah = sah; this->sah = sah; this->dim = dim; this->num_left = i; this->left_bounds = left_bounds; this->right_bounds = right_bounds; } } } } void BVHObjectSplit::split(BVHBuild *builder, BVHRange& left, BVHRange& right, const BVHRange& range) { /* sort references according to split */ bvh_reference_sort(range.start(), range.end(), &builder->references[0], this->dim); /* split node ranges */ left = BVHRange(this->left_bounds, range.start(), this->num_left); right = BVHRange(this->right_bounds, left.end(), range.size() - this->num_left); } /* Spatial Split */ BVHSpatialSplit::BVHSpatialSplit(BVHBuild *builder, const BVHRange& range, float nodeSAH) : sah(FLT_MAX), dim(0), pos(0.0f) { /* initialize bins. */ float3 origin = range.bounds().min; float3 binSize = (range.bounds().max - origin) * (1.0f / (float)BVHParams::NUM_SPATIAL_BINS); float3 invBinSize = 1.0f / binSize; for(int dim = 0; dim < 3; dim++) { for(int i = 0; i < BVHParams::NUM_SPATIAL_BINS; i++) { BVHSpatialBin& bin = builder->spatial_bins[dim][i]; bin.bounds = BoundBox::empty; bin.enter = 0; bin.exit = 0; } } /* chop references into bins. */ for(unsigned int refIdx = range.start(); refIdx < range.end(); refIdx++) { const BVHReference& ref = builder->references[refIdx]; float3 firstBinf = (ref.bounds().min - origin) * invBinSize; float3 lastBinf = (ref.bounds().max - origin) * invBinSize; int3 firstBin = make_int3((int)firstBinf.x, (int)firstBinf.y, (int)firstBinf.z); int3 lastBin = make_int3((int)lastBinf.x, (int)lastBinf.y, (int)lastBinf.z); firstBin = clamp(firstBin, 0, BVHParams::NUM_SPATIAL_BINS - 1); lastBin = clamp(lastBin, firstBin, BVHParams::NUM_SPATIAL_BINS - 1); for(int dim = 0; dim < 3; dim++) { BVHReference currRef = ref; for(int i = firstBin[dim]; i < lastBin[dim]; i++) { BVHReference leftRef, rightRef; split_reference(builder, leftRef, rightRef, currRef, dim, origin[dim] + binSize[dim] * (float)(i + 1)); builder->spatial_bins[dim][i].bounds.grow(leftRef.bounds()); currRef = rightRef; } builder->spatial_bins[dim][lastBin[dim]].bounds.grow(currRef.bounds()); builder->spatial_bins[dim][firstBin[dim]].enter++; builder->spatial_bins[dim][lastBin[dim]].exit++; } } /* select best split plane. */ for(int dim = 0; dim < 3; dim++) { /* sweep right to left and determine bounds. */ BoundBox right_bounds = BoundBox::empty; for(int i = BVHParams::NUM_SPATIAL_BINS - 1; i > 0; i--) { right_bounds.grow(builder->spatial_bins[dim][i].bounds); builder->spatial_right_bounds[i - 1] = right_bounds; } /* sweep left to right and select lowest SAH. */ BoundBox left_bounds = BoundBox::empty; int leftNum = 0; int rightNum = range.size(); for(int i = 1; i < BVHParams::NUM_SPATIAL_BINS; i++) { left_bounds.grow(builder->spatial_bins[dim][i - 1].bounds); leftNum += builder->spatial_bins[dim][i - 1].enter; rightNum -= builder->spatial_bins[dim][i - 1].exit; float sah = nodeSAH + left_bounds.safe_area() * builder->params.primitive_cost(leftNum) + builder->spatial_right_bounds[i - 1].safe_area() * builder->params.primitive_cost(rightNum); if(sah < this->sah) { this->sah = sah; this->dim = dim; this->pos = origin[dim] + binSize[dim] * (float)i; } } } } void BVHSpatialSplit::split(BVHBuild *builder, BVHRange& left, BVHRange& right, const BVHRange& range) { /* Categorize references and compute bounds. * * Left-hand side: [left_start, left_end[ * Uncategorized/split: [left_end, right_start[ * Right-hand side: [right_start, refs.size()[ */ vector& refs = builder->references; int left_start = range.start(); int left_end = left_start; int right_start = range.end(); int right_end = range.end(); BoundBox left_bounds = BoundBox::empty; BoundBox right_bounds = BoundBox::empty; for(int i = left_end; i < right_start; i++) { if(refs[i].bounds().max[this->dim] <= this->pos) { /* entirely on the left-hand side */ left_bounds.grow(refs[i].bounds()); swap(refs[i], refs[left_end++]); } else if(refs[i].bounds().min[this->dim] >= this->pos) { /* entirely on the right-hand side */ right_bounds.grow(refs[i].bounds()); swap(refs[i--], refs[--right_start]); } } /* duplicate or unsplit references intersecting both sides. */ while(left_end < right_start) { /* split reference. */ BVHReference lref, rref; split_reference(builder, lref, rref, refs[left_end], this->dim, this->pos); /* compute SAH for duplicate/unsplit candidates. */ BoundBox lub = left_bounds; // Unsplit to left: new left-hand bounds. BoundBox rub = right_bounds; // Unsplit to right: new right-hand bounds. BoundBox ldb = left_bounds; // Duplicate: new left-hand bounds. BoundBox rdb = right_bounds; // Duplicate: new right-hand bounds. lub.grow(refs[left_end].bounds()); rub.grow(refs[left_end].bounds()); ldb.grow(lref.bounds()); rdb.grow(rref.bounds()); float lac = builder->params.primitive_cost(left_end - left_start); float rac = builder->params.primitive_cost(right_end - right_start); float lbc = builder->params.primitive_cost(left_end - left_start + 1); float rbc = builder->params.primitive_cost(right_end - right_start + 1); float unsplitLeftSAH = lub.safe_area() * lbc + right_bounds.safe_area() * rac; float unsplitRightSAH = left_bounds.safe_area() * lac + rub.safe_area() * rbc; float duplicateSAH = ldb.safe_area() * lbc + rdb.safe_area() * rbc; float minSAH = min(min(unsplitLeftSAH, unsplitRightSAH), duplicateSAH); if(minSAH == unsplitLeftSAH) { /* unsplit to left */ left_bounds = lub; left_end++; } else if(minSAH == unsplitRightSAH) { /* unsplit to right */ right_bounds = rub; swap(refs[left_end], refs[--right_start]); } else { /* duplicate */ left_bounds = ldb; right_bounds = rdb; refs[left_end++] = lref; refs.insert(refs.begin() + right_end, rref); right_end++; } } left = BVHRange(left_bounds, left_start, left_end - left_start); right = BVHRange(right_bounds, right_start, right_end - right_start); } void BVHSpatialSplit::split_reference(BVHBuild *builder, BVHReference& left, BVHReference& right, const BVHReference& ref, int dim, float pos) { /* initialize boundboxes */ BoundBox left_bounds = BoundBox::empty; BoundBox right_bounds = BoundBox::empty; /* loop over vertices/edges. */ Object *ob = builder->objects[ref.prim_object()]; const Mesh *mesh = ob->mesh; if (ref.prim_type() & PRIMITIVE_ALL_TRIANGLE) { const int *inds = mesh->triangles[ref.prim_index()].v; const float3 *verts = &mesh->verts[0]; const float3* v1 = &verts[inds[2]]; for(int i = 0; i < 3; i++) { const float3* v0 = v1; int vindex = inds[i]; v1 = &verts[vindex]; float v0p = (*v0)[dim]; float v1p = (*v1)[dim]; /* insert vertex to the boxes it belongs to. */ if(v0p <= pos) left_bounds.grow(*v0); if(v0p >= pos) right_bounds.grow(*v0); /* edge intersects the plane => insert intersection to both boxes. */ if((v0p < pos && v1p > pos) || (v0p > pos && v1p < pos)) { float3 t = lerp(*v0, *v1, clamp((pos - v0p) / (v1p - v0p), 0.0f, 1.0f)); left_bounds.grow(t); right_bounds.grow(t); } } } else { /* curve split: NOTE - Currently ignores curve width and needs to be fixed.*/ const int k0 = mesh->curves[ref.prim_index()].first_key + PRIMITIVE_UNPACK_SEGMENT(ref.prim_type()); const int k1 = k0 + 1; const float4 key0 = mesh->curve_keys[k0]; const float4 key1 = mesh->curve_keys[k1]; const float3 v0 = float4_to_float3(key0); const float3 v1 = float4_to_float3(key1); float v0p = v0[dim]; float v1p = v1[dim]; /* insert vertex to the boxes it belongs to. */ if(v0p <= pos) left_bounds.grow(v0); if(v0p >= pos) right_bounds.grow(v0); if(v1p <= pos) left_bounds.grow(v1); if(v1p >= pos) right_bounds.grow(v1); /* edge intersects the plane => insert intersection to both boxes. */ if((v0p < pos && v1p > pos) || (v0p > pos && v1p < pos)) { float3 t = lerp(v0, v1, clamp((pos - v0p) / (v1p - v0p), 0.0f, 1.0f)); left_bounds.grow(t); right_bounds.grow(t); } } /* intersect with original bounds. */ left_bounds.max[dim] = pos; right_bounds.min[dim] = pos; left_bounds.intersect(ref.bounds()); right_bounds.intersect(ref.bounds()); /* set references */ left = BVHReference(left_bounds, ref.prim_index(), ref.prim_object(), ref.prim_type()); right = BVHReference(right_bounds, ref.prim_index(), ref.prim_object(), ref.prim_type()); } CCL_NAMESPACE_END