/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "device.h" #include "device_intern.h" #include "buffers.h" #ifdef WITH_CUDA_DYNLOAD # include "cuew.h" #else # include "util_opengl.h" # include # include #endif #include "util_debug.h" #include "util_logging.h" #include "util_map.h" #include "util_md5.h" #include "util_opengl.h" #include "util_path.h" #include "util_string.h" #include "util_system.h" #include "util_types.h" #include "util_time.h" /* use feature-adaptive kernel compilation. * Requires CUDA toolkit to be installed and currently only works on Linux. */ /* #define KERNEL_USE_ADAPTIVE */ CCL_NAMESPACE_BEGIN #ifndef WITH_CUDA_DYNLOAD /* Transparently implement some functions, so majority of the file does not need * to worry about difference between dynamically loaded and linked CUDA at all. */ namespace { const char *cuewErrorString(CUresult result) { /* We can only give error code here without major code duplication, that * should be enough since dynamic loading is only being disabled by folks * who knows what they're doing anyway. * * NOTE: Avoid call from several threads. */ static string error; error = string_printf("%d", result); return error.c_str(); } const char *cuewCompilerPath(void) { return CYCLES_CUDA_NVCC_EXECUTABLE; } int cuewCompilerVersion(void) { return (CUDA_VERSION / 100) + (CUDA_VERSION % 100 / 10); } } /* namespace */ #endif /* WITH_CUDA_DYNLOAD */ class CUDADevice : public Device { public: DedicatedTaskPool task_pool; CUdevice cuDevice; CUcontext cuContext; CUmodule cuModule; map tex_interp_map; int cuDevId; int cuDevArchitecture; bool first_error; bool use_texture_storage; struct PixelMem { GLuint cuPBO; CUgraphicsResource cuPBOresource; GLuint cuTexId; int w, h; }; map pixel_mem_map; CUdeviceptr cuda_device_ptr(device_ptr mem) { return (CUdeviceptr)mem; } static bool have_precompiled_kernels() { string cubins_path = path_get("lib"); return path_exists(cubins_path); } /*#ifdef NDEBUG #define cuda_abort() #else #define cuda_abort() abort() #endif*/ void cuda_error_documentation() { if(first_error) { fprintf(stderr, "\nRefer to the Cycles GPU rendering documentation for possible solutions:\n"); fprintf(stderr, "http://www.blender.org/manual/render/cycles/gpu_rendering.html\n\n"); first_error = false; } } #define cuda_assert(stmt) \ { \ CUresult result = stmt; \ \ if(result != CUDA_SUCCESS) { \ string message = string_printf("CUDA error: %s in %s", cuewErrorString(result), #stmt); \ if(error_msg == "") \ error_msg = message; \ fprintf(stderr, "%s\n", message.c_str()); \ /*cuda_abort();*/ \ cuda_error_documentation(); \ } \ } (void)0 bool cuda_error_(CUresult result, const string& stmt) { if(result == CUDA_SUCCESS) return false; string message = string_printf("CUDA error at %s: %s", stmt.c_str(), cuewErrorString(result)); if(error_msg == "") error_msg = message; fprintf(stderr, "%s\n", message.c_str()); cuda_error_documentation(); return true; } #define cuda_error(stmt) cuda_error_(stmt, #stmt) void cuda_error_message(const string& message) { if(error_msg == "") error_msg = message; fprintf(stderr, "%s\n", message.c_str()); cuda_error_documentation(); } void cuda_push_context() { cuda_assert(cuCtxSetCurrent(cuContext)); } void cuda_pop_context() { cuda_assert(cuCtxSetCurrent(NULL)); } CUDADevice(DeviceInfo& info, Stats &stats, bool background_) : Device(info, stats, background_) { first_error = true; background = background_; use_texture_storage = true; cuDevId = info.num; cuDevice = 0; cuContext = 0; /* intialize */ if(cuda_error(cuInit(0))) return; /* setup device and context */ if(cuda_error(cuDeviceGet(&cuDevice, cuDevId))) return; CUresult result; if(background) { result = cuCtxCreate(&cuContext, 0, cuDevice); } else { result = cuGLCtxCreate(&cuContext, 0, cuDevice); if(result != CUDA_SUCCESS) { result = cuCtxCreate(&cuContext, 0, cuDevice); background = true; } } if(cuda_error_(result, "cuCtxCreate")) return; int major, minor; cuDeviceComputeCapability(&major, &minor, cuDevId); cuDevArchitecture = major*100 + minor*10; /* In order to use full 6GB of memory on Titan cards, use arrays instead * of textures. On earlier cards this seems slower, but on Titan it is * actually slightly faster in tests. */ use_texture_storage = (cuDevArchitecture < 300); cuda_pop_context(); } ~CUDADevice() { task_pool.stop(); cuda_assert(cuCtxDestroy(cuContext)); } bool support_device(const DeviceRequestedFeatures& /*requested_features*/) { int major, minor; cuDeviceComputeCapability(&major, &minor, cuDevId); /* We only support sm_20 and above */ if(major < 2) { cuda_error_message(string_printf("CUDA device supported only with compute capability 2.0 or up, found %d.%d.", major, minor)); return false; } return true; } string compile_kernel(const DeviceRequestedFeatures& requested_features) { /* compute cubin name */ int major, minor; cuDeviceComputeCapability(&major, &minor, cuDevId); string cubin; /* attempt to use kernel provided with blender */ cubin = path_get(string_printf("lib/kernel_sm_%d%d.cubin", major, minor)); VLOG(1) << "Testing for pre-compiled kernel " << cubin; if(path_exists(cubin)) { VLOG(1) << "Using precompiled kernel"; return cubin; } /* not found, try to use locally compiled kernel */ string kernel_path = path_get("kernel"); string md5 = path_files_md5_hash(kernel_path); #ifdef KERNEL_USE_ADAPTIVE string feature_build_options = requested_features.get_build_options(); string device_md5 = util_md5_string(feature_build_options); cubin = string_printf("cycles_kernel_%s_sm%d%d_%s.cubin", device_md5.c_str(), major, minor, md5.c_str()); #else (void)requested_features; cubin = string_printf("cycles_kernel_sm%d%d_%s.cubin", major, minor, md5.c_str()); #endif cubin = path_user_get(path_join("cache", cubin)); VLOG(1) << "Testing for locally compiled kernel " << cubin; /* if exists already, use it */ if(path_exists(cubin)) { VLOG(1) << "Using locally compiled kernel"; return cubin; } #ifdef _WIN32 if(have_precompiled_kernels()) { if(major < 2) cuda_error_message(string_printf("CUDA device requires compute capability 2.0 or up, found %d.%d. Your GPU is not supported.", major, minor)); else cuda_error_message(string_printf("CUDA binary kernel for this graphics card compute capability (%d.%d) not found.", major, minor)); return ""; } #endif /* if not, find CUDA compiler */ const char *nvcc = cuewCompilerPath(); if(nvcc == NULL) { cuda_error_message("CUDA nvcc compiler not found. Install CUDA toolkit in default location."); return ""; } int cuda_version = cuewCompilerVersion(); VLOG(1) << "Found nvcc " << nvcc << ", CUDA version " << cuda_version; if(cuda_version == 0) { cuda_error_message("CUDA nvcc compiler version could not be parsed."); return ""; } if(cuda_version < 60) { printf("Unsupported CUDA version %d.%d detected, you need CUDA 7.5.\n", cuda_version/10, cuda_version%10); return ""; } else if(cuda_version != 75) printf("CUDA version %d.%d detected, build may succeed but only CUDA 7.5 is officially supported.\n", cuda_version/10, cuda_version%10); /* compile */ string kernel = path_join(kernel_path, path_join("kernels", path_join("cuda", "kernel.cu"))); string include = kernel_path; const int machine = system_cpu_bits(); double starttime = time_dt(); printf("Compiling CUDA kernel ...\n"); path_create_directories(cubin); string command = string_printf("\"%s\" -arch=sm_%d%d -m%d --cubin \"%s\" " "-o \"%s\" --ptxas-options=\"-v\" --use_fast_math -I\"%s\" " "-DNVCC -D__KERNEL_CUDA_VERSION__=%d", nvcc, major, minor, machine, kernel.c_str(), cubin.c_str(), include.c_str(), cuda_version); #ifdef KERNEL_USE_ADAPTIVE command += " " + feature_build_options; #endif const char* extra_cflags = getenv("CYCLES_CUDA_EXTRA_CFLAGS"); if(extra_cflags) { command += string(" ") + string(extra_cflags); } #ifdef WITH_CYCLES_DEBUG command += " -D__KERNEL_DEBUG__"; #endif printf("%s\n", command.c_str()); if(system(command.c_str()) == -1) { cuda_error_message("Failed to execute compilation command, see console for details."); return ""; } /* verify if compilation succeeded */ if(!path_exists(cubin)) { cuda_error_message("CUDA kernel compilation failed, see console for details."); return ""; } printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime); return cubin; } bool load_kernels(const DeviceRequestedFeatures& requested_features) { /* check if cuda init succeeded */ if(cuContext == 0) return false; /* check if GPU is supported */ if(!support_device(requested_features)) return false; /* get kernel */ string cubin = compile_kernel(requested_features); if(cubin == "") return false; /* open module */ cuda_push_context(); string cubin_data; CUresult result; if(path_read_text(cubin, cubin_data)) result = cuModuleLoadData(&cuModule, cubin_data.c_str()); else result = CUDA_ERROR_FILE_NOT_FOUND; if(cuda_error_(result, "cuModuleLoad")) cuda_error_message(string_printf("Failed loading CUDA kernel %s.", cubin.c_str())); cuda_pop_context(); return (result == CUDA_SUCCESS); } void mem_alloc(device_memory& mem, MemoryType /*type*/) { cuda_push_context(); CUdeviceptr device_pointer; size_t size = mem.memory_size(); cuda_assert(cuMemAlloc(&device_pointer, size)); mem.device_pointer = (device_ptr)device_pointer; mem.device_size = size; stats.mem_alloc(size); cuda_pop_context(); } void mem_copy_to(device_memory& mem) { cuda_push_context(); if(mem.device_pointer) cuda_assert(cuMemcpyHtoD(cuda_device_ptr(mem.device_pointer), (void*)mem.data_pointer, mem.memory_size())); cuda_pop_context(); } void mem_copy_from(device_memory& mem, int y, int w, int h, int elem) { size_t offset = elem*y*w; size_t size = elem*w*h; cuda_push_context(); if(mem.device_pointer) { cuda_assert(cuMemcpyDtoH((uchar*)mem.data_pointer + offset, (CUdeviceptr)(mem.device_pointer + offset), size)); } else { memset((char*)mem.data_pointer + offset, 0, size); } cuda_pop_context(); } void mem_zero(device_memory& mem) { memset((void*)mem.data_pointer, 0, mem.memory_size()); cuda_push_context(); if(mem.device_pointer) cuda_assert(cuMemsetD8(cuda_device_ptr(mem.device_pointer), 0, mem.memory_size())); cuda_pop_context(); } void mem_free(device_memory& mem) { if(mem.device_pointer) { cuda_push_context(); cuda_assert(cuMemFree(cuda_device_ptr(mem.device_pointer))); cuda_pop_context(); mem.device_pointer = 0; stats.mem_free(mem.device_size); mem.device_size = 0; } } void const_copy_to(const char *name, void *host, size_t size) { CUdeviceptr mem; size_t bytes; cuda_push_context(); cuda_assert(cuModuleGetGlobal(&mem, &bytes, cuModule, name)); //assert(bytes == size); cuda_assert(cuMemcpyHtoD(mem, host, size)); cuda_pop_context(); } void tex_alloc(const char *name, device_memory& mem, InterpolationType interpolation, ExtensionType extension) { VLOG(1) << "Texture allocate: " << name << ", " << mem.memory_size() << " bytes."; string bind_name = name; if(mem.data_depth > 1) { /* Kernel uses different bind names for 2d and 3d float textures, * so we have to adjust couple of things here. */ vector tokens; string_split(tokens, name, "_"); bind_name = string_printf("__tex_image_%s3d_%s", tokens[2].c_str(), tokens[3].c_str()); } /* determine format */ CUarray_format_enum format; size_t dsize = datatype_size(mem.data_type); size_t size = mem.memory_size(); bool use_texture = (interpolation != INTERPOLATION_NONE) || use_texture_storage; if(use_texture) { switch(mem.data_type) { case TYPE_UCHAR: format = CU_AD_FORMAT_UNSIGNED_INT8; break; case TYPE_UINT: format = CU_AD_FORMAT_UNSIGNED_INT32; break; case TYPE_INT: format = CU_AD_FORMAT_SIGNED_INT32; break; case TYPE_FLOAT: format = CU_AD_FORMAT_FLOAT; break; default: assert(0); return; } CUtexref texref = NULL; cuda_push_context(); cuda_assert(cuModuleGetTexRef(&texref, cuModule, bind_name.c_str())); if(!texref) { cuda_pop_context(); return; } if(interpolation != INTERPOLATION_NONE) { CUarray handle = NULL; if(mem.data_depth > 1) { CUDA_ARRAY3D_DESCRIPTOR desc; desc.Width = mem.data_width; desc.Height = mem.data_height; desc.Depth = mem.data_depth; desc.Format = format; desc.NumChannels = mem.data_elements; desc.Flags = 0; cuda_assert(cuArray3DCreate(&handle, &desc)); } else { CUDA_ARRAY_DESCRIPTOR desc; desc.Width = mem.data_width; desc.Height = mem.data_height; desc.Format = format; desc.NumChannels = mem.data_elements; cuda_assert(cuArrayCreate(&handle, &desc)); } if(!handle) { cuda_pop_context(); return; } if(mem.data_depth > 1) { CUDA_MEMCPY3D param; memset(¶m, 0, sizeof(param)); param.dstMemoryType = CU_MEMORYTYPE_ARRAY; param.dstArray = handle; param.srcMemoryType = CU_MEMORYTYPE_HOST; param.srcHost = (void*)mem.data_pointer; param.srcPitch = mem.data_width*dsize*mem.data_elements; param.WidthInBytes = param.srcPitch; param.Height = mem.data_height; param.Depth = mem.data_depth; cuda_assert(cuMemcpy3D(¶m)); } if(mem.data_height > 1) { CUDA_MEMCPY2D param; memset(¶m, 0, sizeof(param)); param.dstMemoryType = CU_MEMORYTYPE_ARRAY; param.dstArray = handle; param.srcMemoryType = CU_MEMORYTYPE_HOST; param.srcHost = (void*)mem.data_pointer; param.srcPitch = mem.data_width*dsize*mem.data_elements; param.WidthInBytes = param.srcPitch; param.Height = mem.data_height; cuda_assert(cuMemcpy2D(¶m)); } else cuda_assert(cuMemcpyHtoA(handle, 0, (void*)mem.data_pointer, size)); cuda_assert(cuTexRefSetArray(texref, handle, CU_TRSA_OVERRIDE_FORMAT)); if(interpolation == INTERPOLATION_CLOSEST) { cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_POINT)); } else if(interpolation == INTERPOLATION_LINEAR) { cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_LINEAR)); } else {/* CUBIC and SMART are unsupported for CUDA */ cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_LINEAR)); } cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_NORMALIZED_COORDINATES)); mem.device_pointer = (device_ptr)handle; mem.device_size = size; stats.mem_alloc(size); } else { cuda_pop_context(); mem_alloc(mem, MEM_READ_ONLY); mem_copy_to(mem); cuda_push_context(); cuda_assert(cuTexRefSetAddress(NULL, texref, cuda_device_ptr(mem.device_pointer), size)); cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_POINT)); cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_READ_AS_INTEGER)); } switch(extension) { case EXTENSION_REPEAT: cuda_assert(cuTexRefSetAddressMode(texref, 0, CU_TR_ADDRESS_MODE_WRAP)); cuda_assert(cuTexRefSetAddressMode(texref, 1, CU_TR_ADDRESS_MODE_WRAP)); break; case EXTENSION_EXTEND: cuda_assert(cuTexRefSetAddressMode(texref, 0, CU_TR_ADDRESS_MODE_CLAMP)); cuda_assert(cuTexRefSetAddressMode(texref, 1, CU_TR_ADDRESS_MODE_CLAMP)); break; case EXTENSION_CLIP: cuda_assert(cuTexRefSetAddressMode(texref, 0, CU_TR_ADDRESS_MODE_BORDER)); cuda_assert(cuTexRefSetAddressMode(texref, 1, CU_TR_ADDRESS_MODE_BORDER)); break; default: assert(0); } cuda_assert(cuTexRefSetFormat(texref, format, mem.data_elements)); cuda_pop_context(); } else { mem_alloc(mem, MEM_READ_ONLY); mem_copy_to(mem); cuda_push_context(); CUdeviceptr cumem; size_t cubytes; cuda_assert(cuModuleGetGlobal(&cumem, &cubytes, cuModule, bind_name.c_str())); if(cubytes == 8) { /* 64 bit device pointer */ uint64_t ptr = mem.device_pointer; cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes)); } else { /* 32 bit device pointer */ uint32_t ptr = (uint32_t)mem.device_pointer; cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes)); } cuda_pop_context(); } tex_interp_map[mem.device_pointer] = (interpolation != INTERPOLATION_NONE); } void tex_free(device_memory& mem) { if(mem.device_pointer) { if(tex_interp_map[mem.device_pointer]) { cuda_push_context(); cuArrayDestroy((CUarray)mem.device_pointer); cuda_pop_context(); tex_interp_map.erase(tex_interp_map.find(mem.device_pointer)); mem.device_pointer = 0; stats.mem_free(mem.device_size); mem.device_size = 0; } else { tex_interp_map.erase(tex_interp_map.find(mem.device_pointer)); mem_free(mem); } } } void path_trace(RenderTile& rtile, int sample, bool branched) { if(have_error()) return; cuda_push_context(); CUfunction cuPathTrace; CUdeviceptr d_buffer = cuda_device_ptr(rtile.buffer); CUdeviceptr d_rng_state = cuda_device_ptr(rtile.rng_state); /* get kernel function */ if(branched) { cuda_assert(cuModuleGetFunction(&cuPathTrace, cuModule, "kernel_cuda_branched_path_trace")); } else { cuda_assert(cuModuleGetFunction(&cuPathTrace, cuModule, "kernel_cuda_path_trace")); } if(have_error()) return; /* pass in parameters */ void *args[] = {&d_buffer, &d_rng_state, &sample, &rtile.x, &rtile.y, &rtile.w, &rtile.h, &rtile.offset, &rtile.stride}; /* launch kernel */ int threads_per_block; cuda_assert(cuFuncGetAttribute(&threads_per_block, CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, cuPathTrace)); /*int num_registers; cuda_assert(cuFuncGetAttribute(&num_registers, CU_FUNC_ATTRIBUTE_NUM_REGS, cuPathTrace)); printf("threads_per_block %d\n", threads_per_block); printf("num_registers %d\n", num_registers);*/ int xthreads = (int)sqrt((float)threads_per_block); int ythreads = (int)sqrt((float)threads_per_block); int xblocks = (rtile.w + xthreads - 1)/xthreads; int yblocks = (rtile.h + ythreads - 1)/ythreads; cuda_assert(cuFuncSetCacheConfig(cuPathTrace, CU_FUNC_CACHE_PREFER_L1)); cuda_assert(cuLaunchKernel(cuPathTrace, xblocks , yblocks, 1, /* blocks */ xthreads, ythreads, 1, /* threads */ 0, 0, args, 0)); cuda_assert(cuCtxSynchronize()); cuda_pop_context(); } void film_convert(DeviceTask& task, device_ptr buffer, device_ptr rgba_byte, device_ptr rgba_half) { if(have_error()) return; cuda_push_context(); CUfunction cuFilmConvert; CUdeviceptr d_rgba = map_pixels((rgba_byte)? rgba_byte: rgba_half); CUdeviceptr d_buffer = cuda_device_ptr(buffer); /* get kernel function */ if(rgba_half) { cuda_assert(cuModuleGetFunction(&cuFilmConvert, cuModule, "kernel_cuda_convert_to_half_float")); } else { cuda_assert(cuModuleGetFunction(&cuFilmConvert, cuModule, "kernel_cuda_convert_to_byte")); } float sample_scale = 1.0f/(task.sample + 1); /* pass in parameters */ void *args[] = {&d_rgba, &d_buffer, &sample_scale, &task.x, &task.y, &task.w, &task.h, &task.offset, &task.stride}; /* launch kernel */ int threads_per_block; cuda_assert(cuFuncGetAttribute(&threads_per_block, CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, cuFilmConvert)); int xthreads = (int)sqrt((float)threads_per_block); int ythreads = (int)sqrt((float)threads_per_block); int xblocks = (task.w + xthreads - 1)/xthreads; int yblocks = (task.h + ythreads - 1)/ythreads; cuda_assert(cuFuncSetCacheConfig(cuFilmConvert, CU_FUNC_CACHE_PREFER_L1)); cuda_assert(cuLaunchKernel(cuFilmConvert, xblocks , yblocks, 1, /* blocks */ xthreads, ythreads, 1, /* threads */ 0, 0, args, 0)); unmap_pixels((rgba_byte)? rgba_byte: rgba_half); cuda_pop_context(); } void shader(DeviceTask& task) { if(have_error()) return; cuda_push_context(); CUfunction cuShader; CUdeviceptr d_input = cuda_device_ptr(task.shader_input); CUdeviceptr d_output = cuda_device_ptr(task.shader_output); CUdeviceptr d_output_luma = cuda_device_ptr(task.shader_output_luma); /* get kernel function */ if(task.shader_eval_type >= SHADER_EVAL_BAKE) { cuda_assert(cuModuleGetFunction(&cuShader, cuModule, "kernel_cuda_bake")); } else { cuda_assert(cuModuleGetFunction(&cuShader, cuModule, "kernel_cuda_shader")); } /* do tasks in smaller chunks, so we can cancel it */ const int shader_chunk_size = 65536; const int start = task.shader_x; const int end = task.shader_x + task.shader_w; int offset = task.offset; bool canceled = false; for(int sample = 0; sample < task.num_samples && !canceled; sample++) { for(int shader_x = start; shader_x < end; shader_x += shader_chunk_size) { int shader_w = min(shader_chunk_size, end - shader_x); /* pass in parameters */ void *args[8]; int arg = 0; args[arg++] = &d_input; args[arg++] = &d_output; if(task.shader_eval_type < SHADER_EVAL_BAKE) { args[arg++] = &d_output_luma; } args[arg++] = &task.shader_eval_type; if(task.shader_eval_type >= SHADER_EVAL_BAKE) { args[arg++] = &task.shader_filter; } args[arg++] = &shader_x; args[arg++] = &shader_w; args[arg++] = &offset; args[arg++] = &sample; /* launch kernel */ int threads_per_block; cuda_assert(cuFuncGetAttribute(&threads_per_block, CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, cuShader)); int xblocks = (shader_w + threads_per_block - 1)/threads_per_block; cuda_assert(cuFuncSetCacheConfig(cuShader, CU_FUNC_CACHE_PREFER_L1)); cuda_assert(cuLaunchKernel(cuShader, xblocks , 1, 1, /* blocks */ threads_per_block, 1, 1, /* threads */ 0, 0, args, 0)); cuda_assert(cuCtxSynchronize()); if(task.get_cancel()) { canceled = false; break; } } task.update_progress(NULL); } cuda_pop_context(); } CUdeviceptr map_pixels(device_ptr mem) { if(!background) { PixelMem pmem = pixel_mem_map[mem]; CUdeviceptr buffer; size_t bytes; cuda_assert(cuGraphicsMapResources(1, &pmem.cuPBOresource, 0)); cuda_assert(cuGraphicsResourceGetMappedPointer(&buffer, &bytes, pmem.cuPBOresource)); return buffer; } return cuda_device_ptr(mem); } void unmap_pixels(device_ptr mem) { if(!background) { PixelMem pmem = pixel_mem_map[mem]; cuda_assert(cuGraphicsUnmapResources(1, &pmem.cuPBOresource, 0)); } } void pixels_alloc(device_memory& mem) { if(!background) { PixelMem pmem; pmem.w = mem.data_width; pmem.h = mem.data_height; cuda_push_context(); glGenBuffers(1, &pmem.cuPBO); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pmem.cuPBO); if(mem.data_type == TYPE_HALF) glBufferData(GL_PIXEL_UNPACK_BUFFER, pmem.w*pmem.h*sizeof(GLhalf)*4, NULL, GL_DYNAMIC_DRAW); else glBufferData(GL_PIXEL_UNPACK_BUFFER, pmem.w*pmem.h*sizeof(uint8_t)*4, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); glGenTextures(1, &pmem.cuTexId); glBindTexture(GL_TEXTURE_2D, pmem.cuTexId); if(mem.data_type == TYPE_HALF) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, pmem.w, pmem.h, 0, GL_RGBA, GL_HALF_FLOAT, NULL); else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, pmem.w, pmem.h, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); CUresult result = cuGraphicsGLRegisterBuffer(&pmem.cuPBOresource, pmem.cuPBO, CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE); if(result == CUDA_SUCCESS) { cuda_pop_context(); mem.device_pointer = pmem.cuTexId; pixel_mem_map[mem.device_pointer] = pmem; mem.device_size = mem.memory_size(); stats.mem_alloc(mem.device_size); return; } else { /* failed to register buffer, fallback to no interop */ glDeleteBuffers(1, &pmem.cuPBO); glDeleteTextures(1, &pmem.cuTexId); cuda_pop_context(); background = true; } } Device::pixels_alloc(mem); } void pixels_copy_from(device_memory& mem, int y, int w, int h) { if(!background) { PixelMem pmem = pixel_mem_map[mem.device_pointer]; cuda_push_context(); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pmem.cuPBO); uchar *pixels = (uchar*)glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_READ_ONLY); size_t offset = sizeof(uchar)*4*y*w; memcpy((uchar*)mem.data_pointer + offset, pixels + offset, sizeof(uchar)*4*w*h); glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); cuda_pop_context(); return; } Device::pixels_copy_from(mem, y, w, h); } void pixels_free(device_memory& mem) { if(mem.device_pointer) { if(!background) { PixelMem pmem = pixel_mem_map[mem.device_pointer]; cuda_push_context(); cuda_assert(cuGraphicsUnregisterResource(pmem.cuPBOresource)); glDeleteBuffers(1, &pmem.cuPBO); glDeleteTextures(1, &pmem.cuTexId); cuda_pop_context(); pixel_mem_map.erase(pixel_mem_map.find(mem.device_pointer)); mem.device_pointer = 0; stats.mem_free(mem.device_size); mem.device_size = 0; return; } Device::pixels_free(mem); } } void draw_pixels(device_memory& mem, int y, int w, int h, int dx, int dy, int width, int height, bool transparent, const DeviceDrawParams &draw_params) { if(!background) { PixelMem pmem = pixel_mem_map[mem.device_pointer]; float *vpointer; cuda_push_context(); /* for multi devices, this assumes the inefficient method that we allocate * all pixels on the device even though we only render to a subset */ size_t offset = 4*y*w; if(mem.data_type == TYPE_HALF) offset *= sizeof(GLhalf); else offset *= sizeof(uint8_t); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pmem.cuPBO); glBindTexture(GL_TEXTURE_2D, pmem.cuTexId); if(mem.data_type == TYPE_HALF) glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_HALF_FLOAT, (void*)offset); else glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)offset); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); glEnable(GL_TEXTURE_2D); if(transparent) { glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } glColor3f(1.0f, 1.0f, 1.0f); if(draw_params.bind_display_space_shader_cb) { draw_params.bind_display_space_shader_cb(); } if(!vertex_buffer) glGenBuffers(1, &vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer); /* invalidate old contents - avoids stalling if buffer is still waiting in queue to be rendered */ glBufferData(GL_ARRAY_BUFFER, 16 * sizeof(float), NULL, GL_STREAM_DRAW); vpointer = (float *)glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY); if(vpointer) { /* texture coordinate - vertex pair */ vpointer[0] = 0.0f; vpointer[1] = 0.0f; vpointer[2] = dx; vpointer[3] = dy; vpointer[4] = (float)w/(float)pmem.w; vpointer[5] = 0.0f; vpointer[6] = (float)width + dx; vpointer[7] = dy; vpointer[8] = (float)w/(float)pmem.w; vpointer[9] = (float)h/(float)pmem.h; vpointer[10] = (float)width + dx; vpointer[11] = (float)height + dy; vpointer[12] = 0.0f; vpointer[13] = (float)h/(float)pmem.h; vpointer[14] = dx; vpointer[15] = (float)height + dy; glUnmapBuffer(GL_ARRAY_BUFFER); } glTexCoordPointer(2, GL_FLOAT, 4 * sizeof(float), 0); glVertexPointer(2, GL_FLOAT, 4 * sizeof(float), (char *)NULL + 2 * sizeof(float)); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); if(draw_params.unbind_display_space_shader_cb) { draw_params.unbind_display_space_shader_cb(); } if(transparent) glDisable(GL_BLEND); glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_2D); cuda_pop_context(); return; } Device::draw_pixels(mem, y, w, h, dx, dy, width, height, transparent, draw_params); } void thread_run(DeviceTask *task) { if(task->type == DeviceTask::PATH_TRACE) { RenderTile tile; bool branched = task->integrator_branched; /* keep rendering tiles until done */ while(task->acquire_tile(this, tile)) { int start_sample = tile.start_sample; int end_sample = tile.start_sample + tile.num_samples; for(int sample = start_sample; sample < end_sample; sample++) { if(task->get_cancel()) { if(task->need_finish_queue == false) break; } path_trace(tile, sample, branched); tile.sample = sample + 1; task->update_progress(&tile); } task->release_tile(tile); } } else if(task->type == DeviceTask::SHADER) { shader(*task); cuda_push_context(); cuda_assert(cuCtxSynchronize()); cuda_pop_context(); } } class CUDADeviceTask : public DeviceTask { public: CUDADeviceTask(CUDADevice *device, DeviceTask& task) : DeviceTask(task) { run = function_bind(&CUDADevice::thread_run, device, this); } }; int get_split_task_count(DeviceTask& /*task*/) { return 1; } void task_add(DeviceTask& task) { if(task.type == DeviceTask::FILM_CONVERT) { /* must be done in main thread due to opengl access */ film_convert(task, task.buffer, task.rgba_byte, task.rgba_half); cuda_push_context(); cuda_assert(cuCtxSynchronize()); cuda_pop_context(); } else { task_pool.push(new CUDADeviceTask(this, task)); } } void task_wait() { task_pool.wait(); } void task_cancel() { task_pool.cancel(); } }; bool device_cuda_init(void) { #ifdef WITH_CUDA_DYNLOAD static bool initialized = false; static bool result = false; if(initialized) return result; initialized = true; int cuew_result = cuewInit(); if(cuew_result == CUEW_SUCCESS) { VLOG(1) << "CUEW initialization succeeded"; if(CUDADevice::have_precompiled_kernels()) { VLOG(1) << "Found precompiled kernels"; result = true; } #ifndef _WIN32 else if(cuewCompilerPath() != NULL) { VLOG(1) << "Found CUDA compiled " << cuewCompilerPath(); result = true; } else { VLOG(1) << "Neither precompiled kernels nor CUDA compiler wad found," << " unable to use CUDA"; } #endif } else { VLOG(1) << "CUEW initialization failed: " << ((cuew_result == CUEW_ERROR_ATEXIT_FAILED) ? "Error setting up atexit() handler" : "Error opening the library"); } return result; #else /* WITH_CUDA_DYNLOAD */ return true; #endif /* WITH_CUDA_DYNLOAD */ } Device *device_cuda_create(DeviceInfo& info, Stats &stats, bool background) { return new CUDADevice(info, stats, background); } void device_cuda_info(vector& devices) { CUresult result; int count = 0; result = cuInit(0); if(result != CUDA_SUCCESS) { if(result != CUDA_ERROR_NO_DEVICE) fprintf(stderr, "CUDA cuInit: %s\n", cuewErrorString(result)); return; } result = cuDeviceGetCount(&count); if(result != CUDA_SUCCESS) { fprintf(stderr, "CUDA cuDeviceGetCount: %s\n", cuewErrorString(result)); return; } vector display_devices; for(int num = 0; num < count; num++) { char name[256]; int attr; if(cuDeviceGetName(name, 256, num) != CUDA_SUCCESS) continue; int major, minor; cuDeviceComputeCapability(&major, &minor, num); if(major < 2) { continue; } DeviceInfo info; info.type = DEVICE_CUDA; info.description = string(name); info.id = string_printf("CUDA_%d", num); info.num = num; info.advanced_shading = (major >= 2); info.extended_images = (major >= 3); info.pack_images = false; /* if device has a kernel timeout, assume it is used for display */ if(cuDeviceGetAttribute(&attr, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, num) == CUDA_SUCCESS && attr == 1) { info.display_device = true; display_devices.push_back(info); } else devices.push_back(info); } if(!display_devices.empty()) devices.insert(devices.end(), display_devices.begin(), display_devices.end()); } string device_cuda_capabilities(void) { CUresult result = cuInit(0); if(result != CUDA_SUCCESS) { if(result != CUDA_ERROR_NO_DEVICE) { return string("Error initializing CUDA: ") + cuewErrorString(result); } return "No CUDA device found\n"; } int count; result = cuDeviceGetCount(&count); if(result != CUDA_SUCCESS) { return string("Error getting devices: ") + cuewErrorString(result); } string capabilities = ""; for(int num = 0; num < count; num++) { char name[256]; if(cuDeviceGetName(name, 256, num) != CUDA_SUCCESS) { continue; } capabilities += string("\t") + name + "\n"; int value; #define GET_ATTR(attr) \ { \ if(cuDeviceGetAttribute(&value, \ CU_DEVICE_ATTRIBUTE_##attr, \ num) == CUDA_SUCCESS) \ { \ capabilities += string_printf("\t\tCU_DEVICE_ATTRIBUTE_" #attr "\t\t\t%d\n", \ value); \ } \ } (void)0 /* TODO(sergey): Strip all attributes which are not useful for us * or does not depend on the driver. */ GET_ATTR(MAX_THREADS_PER_BLOCK); GET_ATTR(MAX_BLOCK_DIM_X); GET_ATTR(MAX_BLOCK_DIM_Y); GET_ATTR(MAX_BLOCK_DIM_Z); GET_ATTR(MAX_GRID_DIM_X); GET_ATTR(MAX_GRID_DIM_Y); GET_ATTR(MAX_GRID_DIM_Z); GET_ATTR(MAX_SHARED_MEMORY_PER_BLOCK); GET_ATTR(SHARED_MEMORY_PER_BLOCK); GET_ATTR(TOTAL_CONSTANT_MEMORY); GET_ATTR(WARP_SIZE); GET_ATTR(MAX_PITCH); GET_ATTR(MAX_REGISTERS_PER_BLOCK); GET_ATTR(REGISTERS_PER_BLOCK); GET_ATTR(CLOCK_RATE); GET_ATTR(TEXTURE_ALIGNMENT); GET_ATTR(GPU_OVERLAP); GET_ATTR(MULTIPROCESSOR_COUNT); GET_ATTR(KERNEL_EXEC_TIMEOUT); GET_ATTR(INTEGRATED); GET_ATTR(CAN_MAP_HOST_MEMORY); GET_ATTR(COMPUTE_MODE); GET_ATTR(MAXIMUM_TEXTURE1D_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_HEIGHT); GET_ATTR(MAXIMUM_TEXTURE3D_WIDTH); GET_ATTR(MAXIMUM_TEXTURE3D_HEIGHT); GET_ATTR(MAXIMUM_TEXTURE3D_DEPTH); GET_ATTR(MAXIMUM_TEXTURE2D_LAYERED_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_LAYERED_HEIGHT); GET_ATTR(MAXIMUM_TEXTURE2D_LAYERED_LAYERS); GET_ATTR(MAXIMUM_TEXTURE2D_ARRAY_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_ARRAY_HEIGHT); GET_ATTR(MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES); GET_ATTR(SURFACE_ALIGNMENT); GET_ATTR(CONCURRENT_KERNELS); GET_ATTR(ECC_ENABLED); GET_ATTR(TCC_DRIVER); GET_ATTR(MEMORY_CLOCK_RATE); GET_ATTR(GLOBAL_MEMORY_BUS_WIDTH); GET_ATTR(L2_CACHE_SIZE); GET_ATTR(MAX_THREADS_PER_MULTIPROCESSOR); GET_ATTR(ASYNC_ENGINE_COUNT); GET_ATTR(UNIFIED_ADDRESSING); GET_ATTR(MAXIMUM_TEXTURE1D_LAYERED_WIDTH); GET_ATTR(MAXIMUM_TEXTURE1D_LAYERED_LAYERS); GET_ATTR(CAN_TEX2D_GATHER); GET_ATTR(MAXIMUM_TEXTURE2D_GATHER_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_GATHER_HEIGHT); GET_ATTR(MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE); GET_ATTR(MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE); GET_ATTR(MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE); GET_ATTR(TEXTURE_PITCH_ALIGNMENT); GET_ATTR(MAXIMUM_TEXTURECUBEMAP_WIDTH); GET_ATTR(MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH); GET_ATTR(MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS); GET_ATTR(MAXIMUM_SURFACE1D_WIDTH); GET_ATTR(MAXIMUM_SURFACE2D_WIDTH); GET_ATTR(MAXIMUM_SURFACE2D_HEIGHT); GET_ATTR(MAXIMUM_SURFACE3D_WIDTH); GET_ATTR(MAXIMUM_SURFACE3D_HEIGHT); GET_ATTR(MAXIMUM_SURFACE3D_DEPTH); GET_ATTR(MAXIMUM_SURFACE1D_LAYERED_WIDTH); GET_ATTR(MAXIMUM_SURFACE1D_LAYERED_LAYERS); GET_ATTR(MAXIMUM_SURFACE2D_LAYERED_WIDTH); GET_ATTR(MAXIMUM_SURFACE2D_LAYERED_HEIGHT); GET_ATTR(MAXIMUM_SURFACE2D_LAYERED_LAYERS); GET_ATTR(MAXIMUM_SURFACECUBEMAP_WIDTH); GET_ATTR(MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH); GET_ATTR(MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS); GET_ATTR(MAXIMUM_TEXTURE1D_LINEAR_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_LINEAR_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_LINEAR_HEIGHT); GET_ATTR(MAXIMUM_TEXTURE2D_LINEAR_PITCH); GET_ATTR(MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH); GET_ATTR(MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT); GET_ATTR(COMPUTE_CAPABILITY_MAJOR); GET_ATTR(COMPUTE_CAPABILITY_MINOR); GET_ATTR(MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH); GET_ATTR(STREAM_PRIORITIES_SUPPORTED); GET_ATTR(GLOBAL_L1_CACHE_SUPPORTED); GET_ATTR(LOCAL_L1_CACHE_SUPPORTED); GET_ATTR(MAX_SHARED_MEMORY_PER_MULTIPROCESSOR); GET_ATTR(MAX_REGISTERS_PER_MULTIPROCESSOR); GET_ATTR(MANAGED_MEMORY); GET_ATTR(MULTI_GPU_BOARD); GET_ATTR(MULTI_GPU_BOARD_GROUP_ID); #undef GET_ATTR capabilities += "\n"; } return capabilities; } CCL_NAMESPACE_END