/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2013, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT bvh_node_intersect #else # define NODE_INTERSECT bvh_aligned_node_intersect #endif /* This is a template BVH traversal function for finding local intersections * around the shading point, for subsurface scattering and bevel. We disable * various features for performance, and for instanced objects avoid traversing * other parts of the scene. * * BVH_MOTION: motion blur rendering */ #ifndef __KERNEL_GPU__ ccl_device #else ccl_device_inline #endif bool BVH_FUNCTION_FULL_NAME(BVH)(const KernelGlobals *kg, const Ray *ray, LocalIntersection *local_isect, int local_object, uint *lcg_state, int max_hits) { /* todo: * - test if pushing distance on the stack helps (for non shadow rays) * - separate version for shadow rays * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversal_stack[BVH_STACK_SIZE]; traversal_stack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stack_ptr = 0; int node_addr = kernel_tex_fetch(__object_node, local_object); /* ray parameters in registers */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = ray->t; if (local_isect != NULL) { local_isect->num_hits = 0; } kernel_assert((local_isect == NULL) == (max_hits == 0)); const int object_flag = kernel_tex_fetch(__object_flag, local_object); if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) { #if BVH_FEATURE(BVH_MOTION) Transform ob_itfm; isect_t *= bvh_instance_motion_push(kg, local_object, ray, &P, &dir, &idir, &ob_itfm); #else isect_t *= bvh_instance_push(kg, local_object, ray, &P, &dir, &idir); #endif object = local_object; } /* traversal loop */ do { do { /* traverse internal nodes */ while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { int node_addr_child1, traverse_mask; float dist[2]; float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr + 0); traverse_mask = NODE_INTERSECT(kg, P, #if BVH_FEATURE(BVH_HAIR) dir, #endif idir, isect_t, node_addr, PATH_RAY_ALL_VISIBILITY, dist); node_addr = __float_as_int(cnodes.z); node_addr_child1 = __float_as_int(cnodes.w); if (traverse_mask == 3) { /* Both children were intersected, push the farther one. */ bool is_closest_child1 = (dist[1] < dist[0]); if (is_closest_child1) { int tmp = node_addr; node_addr = node_addr_child1; node_addr_child1 = tmp; } ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = node_addr_child1; } else { /* One child was intersected. */ if (traverse_mask == 2) { node_addr = node_addr_child1; } else if (traverse_mask == 0) { /* Neither child was intersected. */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } } /* if node is leaf, fetch triangle list */ if (node_addr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr - 1)); int prim_addr = __float_as_int(leaf.x); const int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); /* pop */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; /* primitive intersection */ switch (type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { /* intersect ray against primitive */ for (; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); if (triangle_intersect_local(kg, local_isect, P, dir, object, local_object, prim_addr, isect_t, lcg_state, max_hits)) { return true; } } break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { /* intersect ray against primitive */ for (; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); if (motion_triangle_intersect_local(kg, local_isect, P, dir, ray->time, object, local_object, prim_addr, isect_t, lcg_state, max_hits)) { return true; } } break; } #endif default: { break; } } } } while (node_addr != ENTRYPOINT_SENTINEL); } while (node_addr != ENTRYPOINT_SENTINEL); return false; } ccl_device_inline bool BVH_FUNCTION_NAME(const KernelGlobals *kg, const Ray *ray, LocalIntersection *local_isect, int local_object, uint *lcg_state, int max_hits) { return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, local_isect, local_object, lcg_state, max_hits); } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES #undef NODE_INTERSECT