/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2013, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT bvh_node_intersect #else # define NODE_INTERSECT bvh_aligned_node_intersect #endif /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_HAIR: hair curve rendering * BVH_MOTION: motion blur rendering */ #ifndef __KERNEL_GPU__ ccl_device #else ccl_device_inline #endif bool BVH_FUNCTION_FULL_NAME(BVH)(const KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint visibility, const uint max_hits, uint *num_hits) { /* todo: * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversal_stack[BVH_STACK_SIZE]; traversal_stack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stack_ptr = 0; int node_addr = kernel_data.bvh.root; /* ray parameters in registers */ const float tmax = ray->t; float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = tmax; #if BVH_FEATURE(BVH_MOTION) Transform ob_itfm; #endif float t_world_to_instance = 1.0f; *num_hits = 0; Intersection *isect = isect_array; /* traversal loop */ do { do { /* traverse internal nodes */ while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { int node_addr_child1, traverse_mask; float dist[2]; float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr + 0); traverse_mask = NODE_INTERSECT(kg, P, #if BVH_FEATURE(BVH_HAIR) dir, #endif idir, isect_t, node_addr, visibility, dist); node_addr = __float_as_int(cnodes.z); node_addr_child1 = __float_as_int(cnodes.w); if (traverse_mask == 3) { /* Both children were intersected, push the farther one. */ bool is_closest_child1 = (dist[1] < dist[0]); if (is_closest_child1) { int tmp = node_addr; node_addr = node_addr_child1; node_addr_child1 = tmp; } ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = node_addr_child1; } else { /* One child was intersected. */ if (traverse_mask == 2) { node_addr = node_addr_child1; } else if (traverse_mask == 0) { /* Neither child was intersected. */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } } /* if node is leaf, fetch triangle list */ if (node_addr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr - 1)); int prim_addr = __float_as_int(leaf.x); if (prim_addr >= 0) { const int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); const uint p_type = type & PRIMITIVE_ALL; /* pop */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; /* primitive intersection */ while (prim_addr < prim_addr2) { kernel_assert((kernel_tex_fetch(__prim_type, prim_addr) & PRIMITIVE_ALL) == p_type); bool hit; /* todo: specialized intersect functions which don't fill in * isect unless needed and check SD_HAS_TRANSPARENT_SHADOW? * might give a few % performance improvement */ switch (p_type) { case PRIMITIVE_TRIANGLE: { hit = triangle_intersect( kg, isect, P, dir, isect_t, visibility, object, prim_addr); break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { hit = motion_triangle_intersect( kg, isect, P, dir, isect_t, ray->time, visibility, object, prim_addr); break; } #endif #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE_THICK: case PRIMITIVE_MOTION_CURVE_THICK: case PRIMITIVE_CURVE_RIBBON: case PRIMITIVE_MOTION_CURVE_RIBBON: { const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr); hit = curve_intersect(kg, isect, P, dir, isect_t, visibility, object, prim_addr, ray->time, curve_type); break; } #endif default: { hit = false; break; } } /* shadow ray early termination */ if (hit) { /* Convert intersection distance to world space. */ isect->t /= t_world_to_instance; /* detect if this surface has a shader with transparent shadows */ /* todo: optimize so primitive visibility flag indicates if * the primitive has a transparent shadow shader? */ const int flags = intersection_get_shader_flags(kg, isect); if (!(flags & SD_HAS_TRANSPARENT_SHADOW) || max_hits == 0) { /* If no transparent shadows, all light is blocked and we can * stop immediately. */ return true; } /* Increase the number of hits, possibly beyond max_hits, we will * simply not record those and only keep the max_hits closest. */ (*num_hits)++; if (*num_hits >= max_hits) { /* If maximum number of hits reached, find the intersection with * the largest distance to potentially replace when another hit * is found. */ const int num_recorded_hits = min(max_hits, *num_hits); float max_recorded_t = isect_array[0].t; int max_recorded_hit = 0; for (int i = 1; i < num_recorded_hits; i++) { if (isect_array[i].t > max_recorded_t) { max_recorded_t = isect_array[i].t; max_recorded_hit = i; } } isect = isect_array + max_recorded_hit; /* Limit the ray distance and stop counting hits beyond this. */ isect_t = max_recorded_t * t_world_to_instance; } else { /* Still have space for intersection, use next hit. */ isect = isect + 1; } } prim_addr++; } } else { /* instance push */ object = kernel_tex_fetch(__prim_object, -prim_addr - 1); #if BVH_FEATURE(BVH_MOTION) t_world_to_instance = bvh_instance_motion_push( kg, object, ray, &P, &dir, &idir, &ob_itfm); #else t_world_to_instance = bvh_instance_push(kg, object, ray, &P, &dir, &idir); #endif /* Convert intersection to object space. */ isect_t *= t_world_to_instance; ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL; node_addr = kernel_tex_fetch(__object_node, object); } } } while (node_addr != ENTRYPOINT_SENTINEL); if (stack_ptr >= 0) { kernel_assert(object != OBJECT_NONE); /* Instance pop. */ #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm); #else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX); #endif /* Restore world space ray length. If max number of hits exceeded this * distance is reduced to recorded only the closest hits. If not use * the original ray length. */ isect_t = (max_hits && *num_hits > max_hits) ? isect->t : tmax; object = OBJECT_NONE; t_world_to_instance = 1.0f; node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } while (node_addr != ENTRYPOINT_SENTINEL); return false; } ccl_device_inline bool BVH_FUNCTION_NAME(const KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint visibility, const uint max_hits, uint *num_hits) { return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect_array, visibility, max_hits, num_hits); } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES #undef NODE_INTERSECT