/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2013, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef __QBVH__ # include "kernel/bvh/qbvh_traversal.h" #endif #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT bvh_node_intersect # define NODE_INTERSECT_ROBUST bvh_node_intersect_robust #else # define NODE_INTERSECT bvh_aligned_node_intersect # define NODE_INTERSECT_ROBUST bvh_aligned_node_intersect_robust #endif /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_HAIR: hair curve rendering * BVH_HAIR_MINIMUM_WIDTH: hair curve rendering with minimum width * BVH_MOTION: motion blur rendering * */ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg, const Ray *ray, Intersection *isect, const uint visibility #if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) , uint *lcg_state, float difl, float extmax #endif ) { /* todo: * - test if pushing distance on the stack helps (for non shadow rays) * - separate version for shadow rays * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversal_stack[BVH_STACK_SIZE]; traversal_stack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stack_ptr = 0; int node_addr = kernel_data.bvh.root; /* ray parameters in registers */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; #if BVH_FEATURE(BVH_MOTION) Transform ob_itfm; #endif isect->t = ray->t; isect->u = 0.0f; isect->v = 0.0f; isect->prim = PRIM_NONE; isect->object = OBJECT_NONE; BVH_DEBUG_INIT(); #if defined(__KERNEL_SSE2__) const shuffle_swap_t shuf_identity = shuffle_swap_identity(); const shuffle_swap_t shuf_swap = shuffle_swap_swap(); const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000)); ssef Psplat[3], idirsplat[3]; # if BVH_FEATURE(BVH_HAIR) ssef tnear(0.0f), tfar(isect->t); # endif shuffle_swap_t shufflexyz[3]; Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); ssef tsplat(0.0f, 0.0f, -isect->t, -isect->t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif /* traversal loop */ do { do { /* traverse internal nodes */ while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { int node_addr_child1, traverse_mask; float dist[2]; float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+0); #if !defined(__KERNEL_SSE2__) # if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) if(difl != 0.0f) { traverse_mask = NODE_INTERSECT_ROBUST(kg, P, # if BVH_FEATURE(BVH_HAIR) dir, # endif idir, isect->t, difl, extmax, node_addr, visibility, dist); } else # endif { traverse_mask = NODE_INTERSECT(kg, P, # if BVH_FEATURE(BVH_HAIR) dir, # endif idir, isect->t, node_addr, visibility, dist); } #else // __KERNEL_SSE2__ # if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) if(difl != 0.0f) { traverse_mask = NODE_INTERSECT_ROBUST(kg, P, dir, # if BVH_FEATURE(BVH_HAIR) tnear, tfar, # endif tsplat, Psplat, idirsplat, shufflexyz, difl, extmax, node_addr, visibility, dist); } else # endif { traverse_mask = NODE_INTERSECT(kg, P, dir, # if BVH_FEATURE(BVH_HAIR) tnear, tfar, # endif tsplat, Psplat, idirsplat, shufflexyz, node_addr, visibility, dist); } #endif // __KERNEL_SSE2__ node_addr = __float_as_int(cnodes.z); node_addr_child1 = __float_as_int(cnodes.w); if(traverse_mask == 3) { /* Both children were intersected, push the farther one. */ bool is_closest_child1 = (dist[1] < dist[0]); if(is_closest_child1) { int tmp = node_addr; node_addr = node_addr_child1; node_addr_child1 = tmp; } ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = node_addr_child1; } else { /* One child was intersected. */ if(traverse_mask == 2) { node_addr = node_addr_child1; } else if(traverse_mask == 0) { /* Neither child was intersected. */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } BVH_DEBUG_NEXT_NODE(); } /* if node is leaf, fetch triangle list */ if(node_addr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1)); int prim_addr = __float_as_int(leaf.x); #if BVH_FEATURE(BVH_INSTANCING) if(prim_addr >= 0) { #endif const int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); /* pop */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; /* primitive intersection */ switch(type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { for(; prim_addr < prim_addr2; prim_addr++) { BVH_DEBUG_NEXT_INTERSECTION(); kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); if(triangle_intersect(kg, isect, P, dir, visibility, object, prim_addr)) { /* shadow ray early termination */ #if defined(__KERNEL_SSE2__) if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t); # if BVH_FEATURE(BVH_HAIR) tfar = ssef(isect->t); # endif #else if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; #endif } } break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { for(; prim_addr < prim_addr2; prim_addr++) { BVH_DEBUG_NEXT_INTERSECTION(); kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); if(motion_triangle_intersect(kg, isect, P, dir, ray->time, visibility, object, prim_addr)) { /* shadow ray early termination */ # if defined(__KERNEL_SSE2__) if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t); # if BVH_FEATURE(BVH_HAIR) tfar = ssef(isect->t); # endif # else if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; # endif } } break; } #endif /* BVH_FEATURE(BVH_MOTION) */ #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE: case PRIMITIVE_MOTION_CURVE: { for(; prim_addr < prim_addr2; prim_addr++) { BVH_DEBUG_NEXT_INTERSECTION(); const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr); kernel_assert((curve_type & PRIMITIVE_ALL) == (type & PRIMITIVE_ALL)); bool hit; if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) { hit = bvh_cardinal_curve_intersect(kg, isect, P, dir, visibility, object, prim_addr, ray->time, curve_type, lcg_state, difl, extmax); } else { hit = bvh_curve_intersect(kg, isect, P, dir, visibility, object, prim_addr, ray->time, curve_type, lcg_state, difl, extmax); } if(hit) { /* shadow ray early termination */ # if defined(__KERNEL_SSE2__) if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t); # if BVH_FEATURE(BVH_HAIR) tfar = ssef(isect->t); # endif # else if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; # endif } } break; } #endif /* BVH_FEATURE(BVH_HAIR) */ } } #if BVH_FEATURE(BVH_INSTANCING) else { /* instance push */ object = kernel_tex_fetch(__prim_object, -prim_addr-1); # if BVH_FEATURE(BVH_MOTION) isect->t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm); # else isect->t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect->t); # endif # if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t); # if BVH_FEATURE(BVH_HAIR) tfar = ssef(isect->t); # endif gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); # endif ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL; node_addr = kernel_tex_fetch(__object_node, object); BVH_DEBUG_NEXT_INSTANCE(); } } #endif /* FEATURE(BVH_INSTANCING) */ } while(node_addr != ENTRYPOINT_SENTINEL); #if BVH_FEATURE(BVH_INSTANCING) if(stack_ptr >= 0) { kernel_assert(object != OBJECT_NONE); /* instance pop */ # if BVH_FEATURE(BVH_MOTION) isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm); # else isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t); # endif # if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t); # if BVH_FEATURE(BVH_HAIR) tfar = ssef(isect->t); # endif gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); # endif object = OBJECT_NONE; node_addr = traversal_stack[stack_ptr]; --stack_ptr; } #endif /* FEATURE(BVH_INSTANCING) */ } while(node_addr != ENTRYPOINT_SENTINEL); return (isect->prim != PRIM_NONE); } ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals *kg, const Ray *ray, Intersection *isect, const uint visibility #if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) , uint *lcg_state, float difl, float extmax #endif ) { #ifdef __QBVH__ if(kernel_data.bvh.use_qbvh) { return BVH_FUNCTION_FULL_NAME(QBVH)(kg, ray, isect, visibility #if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) , lcg_state, difl, extmax #endif ); } else #endif { kernel_assert(kernel_data.bvh.use_qbvh == false); return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect, visibility #if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) , lcg_state, difl, extmax #endif ); } } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES #undef NODE_INTERSECT #undef NODE_INTERSECT_ROBUST