/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2014, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef __QBVH__ # include "kernel/bvh/qbvh_volume_all.h" #endif #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT bvh_node_intersect #else # define NODE_INTERSECT bvh_aligned_node_intersect #endif /* This is a template BVH traversal function for volumes, where * various features can be enabled/disabled. This way we can compile optimized * versions for each case without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_MOTION: motion blur rendering * */ #ifndef __KERNEL_GPU__ ccl_device #else ccl_device_inline #endif uint BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint max_hits, const uint visibility) { /* todo: * - test if pushing distance on the stack helps (for non shadow rays) * - separate version for shadow rays * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversal_stack[BVH_STACK_SIZE]; traversal_stack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stack_ptr = 0; int node_addr = kernel_data.bvh.root; /* ray parameters in registers */ const float tmax = ray->t; float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = tmax; #if BVH_FEATURE(BVH_MOTION) Transform ob_itfm; #endif #if BVH_FEATURE(BVH_INSTANCING) int num_hits_in_instance = 0; #endif uint num_hits = 0; isect_array->t = tmax; #if defined(__KERNEL_SSE2__) const shuffle_swap_t shuf_identity = shuffle_swap_identity(); const shuffle_swap_t shuf_swap = shuffle_swap_swap(); const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000)); ssef Psplat[3], idirsplat[3]; # if BVH_FEATURE(BVH_HAIR) ssef tnear(0.0f), tfar(isect_t); # endif shuffle_swap_t shufflexyz[3]; Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); ssef tsplat(0.0f, 0.0f, -isect_t, -isect_t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif /* __KERNEL_SSE2__ */ /* traversal loop */ do { do { /* traverse internal nodes */ while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { int node_addr_child1, traverse_mask; float dist[2]; float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+0); #if !defined(__KERNEL_SSE2__) traverse_mask = NODE_INTERSECT(kg, P, # if BVH_FEATURE(BVH_HAIR) dir, # endif idir, isect_t, node_addr, visibility, dist); #else // __KERNEL_SSE2__ traverse_mask = NODE_INTERSECT(kg, P, dir, # if BVH_FEATURE(BVH_HAIR) tnear, tfar, # endif tsplat, Psplat, idirsplat, shufflexyz, node_addr, visibility, dist); #endif // __KERNEL_SSE2__ node_addr = __float_as_int(cnodes.z); node_addr_child1 = __float_as_int(cnodes.w); if(traverse_mask == 3) { /* Both children were intersected, push the farther one. */ bool is_closest_child1 = (dist[1] < dist[0]); if(is_closest_child1) { int tmp = node_addr; node_addr = node_addr_child1; node_addr_child1 = tmp; } ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = node_addr_child1; } else { /* One child was intersected. */ if(traverse_mask == 2) { node_addr = node_addr_child1; } else if(traverse_mask == 0) { /* Neither child was intersected. */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } } /* if node is leaf, fetch triangle list */ if(node_addr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1)); int prim_addr = __float_as_int(leaf.x); #if BVH_FEATURE(BVH_INSTANCING) if(prim_addr >= 0) { #endif const int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); bool hit; /* pop */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; /* primitive intersection */ switch(type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { /* intersect ray against primitive */ for(; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); /* only primitives from volume object */ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object; int object_flag = kernel_tex_fetch(__object_flag, tri_object); if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { continue; } hit = triangle_intersect(kg, isect_array, P, dir, visibility, object, prim_addr); if(hit) { /* Move on to next entry in intersections array. */ isect_array++; num_hits++; #if BVH_FEATURE(BVH_INSTANCING) num_hits_in_instance++; #endif isect_array->t = isect_t; if(num_hits == max_hits) { #if BVH_FEATURE(BVH_INSTANCING) if(object != OBJECT_NONE) { # if BVH_FEATURE(BVH_MOTION) float t_fac = 1.0f / len(transform_direction(&ob_itfm, dir)); # else Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); float t_fac = 1.0f / len(transform_direction(&itfm, dir)); # endif for(int i = 0; i < num_hits_in_instance; i++) { (isect_array-i-1)->t *= t_fac; } } #endif /* BVH_FEATURE(BVH_INSTANCING) */ return num_hits; } } } break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { /* intersect ray against primitive */ for(; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); /* only primitives from volume object */ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object; int object_flag = kernel_tex_fetch(__object_flag, tri_object); if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { continue; } hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, visibility, object, prim_addr); if(hit) { /* Move on to next entry in intersections array. */ isect_array++; num_hits++; # if BVH_FEATURE(BVH_INSTANCING) num_hits_in_instance++; # endif isect_array->t = isect_t; if(num_hits == max_hits) { # if BVH_FEATURE(BVH_INSTANCING) if(object != OBJECT_NONE) { # if BVH_FEATURE(BVH_MOTION) float t_fac = 1.0f / len(transform_direction(&ob_itfm, dir)); # else Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); float t_fac = 1.0f / len(transform_direction(&itfm, dir)); # endif for(int i = 0; i < num_hits_in_instance; i++) { (isect_array-i-1)->t *= t_fac; } } # endif /* BVH_FEATURE(BVH_INSTANCING) */ return num_hits; } } } break; } #endif /* BVH_MOTION */ default: { break; } } } #if BVH_FEATURE(BVH_INSTANCING) else { /* instance push */ object = kernel_tex_fetch(__prim_object, -prim_addr-1); int object_flag = kernel_tex_fetch(__object_flag, object); if(object_flag & SD_OBJECT_HAS_VOLUME) { # if BVH_FEATURE(BVH_MOTION) isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm); # else isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t); # endif num_hits_in_instance = 0; isect_array->t = isect_t; # if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); # if BVH_FEATURE(BVH_HAIR) tfar = ssef(isect_t); # endif gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); # endif ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL; node_addr = kernel_tex_fetch(__object_node, object); } else { /* pop */ object = OBJECT_NONE; node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } } #endif /* FEATURE(BVH_INSTANCING) */ } while(node_addr != ENTRYPOINT_SENTINEL); #if BVH_FEATURE(BVH_INSTANCING) if(stack_ptr >= 0) { kernel_assert(object != OBJECT_NONE); /* Instance pop. */ if(num_hits_in_instance) { float t_fac; # if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_itfm); # else bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac); # endif /* Scale isect->t to adjust for instancing. */ for(int i = 0; i < num_hits_in_instance; i++) { (isect_array-i-1)->t *= t_fac; } } else { # if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm); # else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX); # endif } isect_t = tmax; isect_array->t = isect_t; # if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); # if BVH_FEATURE(BVH_HAIR) tfar = ssef(isect_t); # endif gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); # endif object = OBJECT_NONE; node_addr = traversal_stack[stack_ptr]; --stack_ptr; } #endif /* FEATURE(BVH_INSTANCING) */ } while(node_addr != ENTRYPOINT_SENTINEL); return num_hits; } ccl_device_inline uint BVH_FUNCTION_NAME(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint max_hits, const uint visibility) { switch(kernel_data.bvh.bvh_layout) { #ifdef __QBVH__ case BVH_LAYOUT_BVH4: return BVH_FUNCTION_FULL_NAME(QBVH)(kg, ray, isect_array, max_hits, visibility); #endif case BVH_LAYOUT_BVH2: return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect_array, max_hits, visibility); } kernel_assert(!"Should not happen"); return 0; } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES #undef NODE_INTERSECT