/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a template BVH traversal function for finding local intersections * around the shading point, for subsurface scattering and bevel. We disable * various features for performance, and for instanced objects avoid traversing * other parts of the scene. * * BVH_MOTION: motion blur rendering * */ #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT qbvh_node_intersect #else # define NODE_INTERSECT qbvh_aligned_node_intersect #endif ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg, const Ray *ray, LocalIntersection *local_isect, int local_object, uint *lcg_state, int max_hits) { /* TODO(sergey): * - Test if pushing distance on the stack helps (for non shadow rays). * - Separate version for shadow rays. * - Likely and unlikely for if() statements. * - SSE for hair. * - Test restrict attribute for pointers. */ /* Traversal stack in CUDA thread-local memory. */ QBVHStackItem traversal_stack[BVH_QSTACK_SIZE]; traversal_stack[0].addr = ENTRYPOINT_SENTINEL; /* Traversal variables in registers. */ int stack_ptr = 0; int node_addr = kernel_tex_fetch(__object_node, local_object); /* Ray parameters in registers. */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = ray->t; if(local_isect) { local_isect->num_hits = 0; } kernel_assert((local_isect == NULL) == (max_hits == 0)); const int object_flag = kernel_tex_fetch(__object_flag, local_object); if(!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) { #if BVH_FEATURE(BVH_MOTION) Transform ob_itfm; isect_t = bvh_instance_motion_push(kg, local_object, ray, &P, &dir, &idir, isect_t, &ob_itfm); #else isect_t = bvh_instance_push(kg, local_object, ray, &P, &dir, &idir, isect_t); #endif object = local_object; } #ifndef __KERNEL_SSE41__ if(!isfinite(P.x)) { return false; } #endif ssef tnear(0.0f), tfar(isect_t); #if BVH_FEATURE(BVH_HAIR) sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z)); #endif sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ float3 P_idir = P*idir; sse3f P_idir4(P_idir.x, P_idir.y, P_idir.z); #endif #if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) sse3f org4(ssef(P.x), ssef(P.y), ssef(P.z)); #endif /* Offsets to select the side that becomes the lower or upper bound. */ int near_x, near_y, near_z; int far_x, far_y, far_z; qbvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z); /* Traversal loop. */ do { do { /* Traverse internal nodes. */ while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { ssef dist; int child_mask = NODE_INTERSECT(kg, tnear, tfar, #ifdef __KERNEL_AVX2__ P_idir4, #endif #if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) org4, #endif #if BVH_FEATURE(BVH_HAIR) dir4, #endif idir4, near_x, near_y, near_z, far_x, far_y, far_z, node_addr, &dist); if(child_mask != 0) { float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0); float4 cnodes; #if BVH_FEATURE(BVH_HAIR) if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) { cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+13); } else #endif { cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+7); } /* One child is hit, continue with that child. */ int r = __bscf(child_mask); if(child_mask == 0) { node_addr = __float_as_int(cnodes[r]); continue; } /* Two children are hit, push far child, and continue with * closer child. */ int c0 = __float_as_int(cnodes[r]); float d0 = ((float*)&dist)[r]; r = __bscf(child_mask); int c1 = __float_as_int(cnodes[r]); float d1 = ((float*)&dist)[r]; if(child_mask == 0) { if(d1 < d0) { node_addr = c1; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c0; traversal_stack[stack_ptr].dist = d0; continue; } else { node_addr = c0; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c1; traversal_stack[stack_ptr].dist = d1; continue; } } /* Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c1; traversal_stack[stack_ptr].dist = d1; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c0; traversal_stack[stack_ptr].dist = d0; /* Three children are hit, push all onto stack and sort 3 * stack items, continue with closest child. */ r = __bscf(child_mask); int c2 = __float_as_int(cnodes[r]); float d2 = ((float*)&dist)[r]; if(child_mask == 0) { ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c2; traversal_stack[stack_ptr].dist = d2; qbvh_stack_sort(&traversal_stack[stack_ptr], &traversal_stack[stack_ptr - 1], &traversal_stack[stack_ptr - 2]); node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; continue; } /* Four children are hit, push all onto stack and sort 4 * stack items, continue with closest child. */ r = __bscf(child_mask); int c3 = __float_as_int(cnodes[r]); float d3 = ((float*)&dist)[r]; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c3; traversal_stack[stack_ptr].dist = d3; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c2; traversal_stack[stack_ptr].dist = d2; qbvh_stack_sort(&traversal_stack[stack_ptr], &traversal_stack[stack_ptr - 1], &traversal_stack[stack_ptr - 2], &traversal_stack[stack_ptr - 3]); } node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; } /* If node is leaf, fetch triangle list. */ if(node_addr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1)); int prim_addr = __float_as_int(leaf.x); int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); /* Pop. */ node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; /* Primitive intersection. */ switch(type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { /* Intersect ray against primitive, */ for(; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); if(triangle_intersect_local(kg, local_isect, P, dir, object, local_object, prim_addr, isect_t, lcg_state, max_hits)) { return true; } } break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { /* Intersect ray against primitive. */ for(; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); if(motion_triangle_intersect_local(kg, local_isect, P, dir, ray->time, object, local_object, prim_addr, isect_t, lcg_state, max_hits)) { return true; } } break; } #endif default: break; } } } while(node_addr != ENTRYPOINT_SENTINEL); } while(node_addr != ENTRYPOINT_SENTINEL); return false; } #undef NODE_INTERSECT