/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_HAIR: hair curve rendering * BVH_MOTION: motion blur rendering * */ #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT qbvh_node_intersect #else # define NODE_INTERSECT qbvh_aligned_node_intersect #endif ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint visibility, const uint max_hits, uint *num_hits) { /* TODO(sergey): * - Test if pushing distance on the stack helps. * - Likely and unlikely for if() statements. * - Test restrict attribute for pointers. */ /* Traversal stack in CUDA thread-local memory. */ QBVHStackItem traversal_stack[BVH_QSTACK_SIZE]; traversal_stack[0].addr = ENTRYPOINT_SENTINEL; /* Traversal variables in registers. */ int stack_ptr = 0; int node_addr = kernel_data.bvh.root; /* Ray parameters in registers. */ const float tmax = ray->t; float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = tmax; #if BVH_FEATURE(BVH_MOTION) Transform ob_itfm; #endif *num_hits = 0; isect_array->t = tmax; #ifndef __KERNEL_SSE41__ if(!isfinite(P.x)) { return false; } #endif #if BVH_FEATURE(BVH_INSTANCING) int num_hits_in_instance = 0; #endif ssef tnear(0.0f), tfar(isect_t); #if BVH_FEATURE(BVH_HAIR) sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z)); #endif sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ float3 P_idir = P*idir; sse3f P_idir4(P_idir.x, P_idir.y, P_idir.z); #endif #if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) sse3f org4(ssef(P.x), ssef(P.y), ssef(P.z)); #endif /* Offsets to select the side that becomes the lower or upper bound. */ int near_x, near_y, near_z; int far_x, far_y, far_z; qbvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z); /* Traversal loop. */ do { do { /* Traverse internal nodes. */ while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0); (void)inodes; if(false #ifdef __VISIBILITY_FLAG__ || ((__float_as_uint(inodes.x) & visibility) == 0) #endif #if BVH_FEATURE(BVH_MOTION) || UNLIKELY(ray->time < inodes.y) || UNLIKELY(ray->time > inodes.z) #endif ) { /* Pop. */ node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; continue; } ssef dist; int child_mask = NODE_INTERSECT(kg, tnear, tfar, #ifdef __KERNEL_AVX2__ P_idir4, #endif #if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) org4, #endif #if BVH_FEATURE(BVH_HAIR) dir4, #endif idir4, near_x, near_y, near_z, far_x, far_y, far_z, node_addr, &dist); if(child_mask != 0) { float4 cnodes; #if BVH_FEATURE(BVH_HAIR) if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) { cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+13); } else #endif { cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+7); } /* One child is hit, continue with that child. */ int r = __bscf(child_mask); if(child_mask == 0) { node_addr = __float_as_int(cnodes[r]); continue; } /* Two children are hit, push far child, and continue with * closer child. */ int c0 = __float_as_int(cnodes[r]); float d0 = ((float*)&dist)[r]; r = __bscf(child_mask); int c1 = __float_as_int(cnodes[r]); float d1 = ((float*)&dist)[r]; if(child_mask == 0) { if(d1 < d0) { node_addr = c1; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c0; traversal_stack[stack_ptr].dist = d0; continue; } else { node_addr = c0; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c1; traversal_stack[stack_ptr].dist = d1; continue; } } /* Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c1; traversal_stack[stack_ptr].dist = d1; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c0; traversal_stack[stack_ptr].dist = d0; /* Three children are hit, push all onto stack and sort 3 * stack items, continue with closest child. */ r = __bscf(child_mask); int c2 = __float_as_int(cnodes[r]); float d2 = ((float*)&dist)[r]; if(child_mask == 0) { ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c2; traversal_stack[stack_ptr].dist = d2; qbvh_stack_sort(&traversal_stack[stack_ptr], &traversal_stack[stack_ptr - 1], &traversal_stack[stack_ptr - 2]); node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; continue; } /* Four children are hit, push all onto stack and sort 4 * stack items, continue with closest child. */ r = __bscf(child_mask); int c3 = __float_as_int(cnodes[r]); float d3 = ((float*)&dist)[r]; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c3; traversal_stack[stack_ptr].dist = d3; ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = c2; traversal_stack[stack_ptr].dist = d2; qbvh_stack_sort(&traversal_stack[stack_ptr], &traversal_stack[stack_ptr - 1], &traversal_stack[stack_ptr - 2], &traversal_stack[stack_ptr - 3]); } node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; } /* If node is leaf, fetch triangle list. */ if(node_addr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1)); #ifdef __VISIBILITY_FLAG__ if((__float_as_uint(leaf.z) & visibility) == 0) { /* Pop. */ node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; continue; } #endif int prim_addr = __float_as_int(leaf.x); #if BVH_FEATURE(BVH_INSTANCING) if(prim_addr >= 0) { #endif int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); const uint p_type = type & PRIMITIVE_ALL; /* Pop. */ node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; /* Primitive intersection. */ while(prim_addr < prim_addr2) { kernel_assert((kernel_tex_fetch(__prim_type, prim_addr) & PRIMITIVE_ALL) == p_type); bool hit; /* todo: specialized intersect functions which don't fill in * isect unless needed and check SD_HAS_TRANSPARENT_SHADOW? * might give a few % performance improvement */ switch(p_type) { case PRIMITIVE_TRIANGLE: { hit = triangle_intersect(kg, isect_array, P, dir, visibility, object, prim_addr); break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, visibility, object, prim_addr); break; } #endif #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE: case PRIMITIVE_MOTION_CURVE: { const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr); if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) { hit = cardinal_curve_intersect(kg, isect_array, P, dir, visibility, object, prim_addr, ray->time, curve_type, NULL, 0, 0); } else { hit = curve_intersect(kg, isect_array, P, dir, visibility, object, prim_addr, ray->time, curve_type, NULL, 0, 0); } break; } #endif default: { hit = false; break; } } /* Shadow ray early termination. */ if(hit) { /* detect if this surface has a shader with transparent shadows */ /* todo: optimize so primitive visibility flag indicates if * the primitive has a transparent shadow shader? */ int prim = kernel_tex_fetch(__prim_index, isect_array->prim); int shader = 0; #ifdef __HAIR__ if(kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE) #endif { shader = kernel_tex_fetch(__tri_shader, prim); } #ifdef __HAIR__ else { float4 str = kernel_tex_fetch(__curves, prim); shader = __float_as_int(str.z); } #endif int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*SHADER_SIZE); /* if no transparent shadows, all light is blocked */ if(!(flag & SD_HAS_TRANSPARENT_SHADOW)) { return true; } /* if maximum number of hits reached, block all light */ else if(*num_hits == max_hits) { return true; } /* move on to next entry in intersections array */ isect_array++; (*num_hits)++; #if BVH_FEATURE(BVH_INSTANCING) num_hits_in_instance++; #endif isect_array->t = isect_t; } prim_addr++; } } #if BVH_FEATURE(BVH_INSTANCING) else { /* Instance push. */ object = kernel_tex_fetch(__prim_object, -prim_addr-1); # if BVH_FEATURE(BVH_MOTION) isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm); # else isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t); # endif num_hits_in_instance = 0; isect_array->t = isect_t; qbvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z); tfar = ssef(isect_t); # if BVH_FEATURE(BVH_HAIR) dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z)); # endif idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); # ifdef __KERNEL_AVX2__ P_idir = P*idir; P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); # endif # if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); # endif ++stack_ptr; kernel_assert(stack_ptr < BVH_QSTACK_SIZE); traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL; node_addr = kernel_tex_fetch(__object_node, object); } } #endif /* FEATURE(BVH_INSTANCING) */ } while(node_addr != ENTRYPOINT_SENTINEL); #if BVH_FEATURE(BVH_INSTANCING) if(stack_ptr >= 0) { kernel_assert(object != OBJECT_NONE); /* Instance pop. */ if(num_hits_in_instance) { float t_fac; # if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_itfm); # else bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac); # endif /* Scale isect->t to adjust for instancing. */ for(int i = 0; i < num_hits_in_instance; i++) { (isect_array-i-1)->t *= t_fac; } } else { # if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm); # else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX); # endif } isect_t = tmax; isect_array->t = isect_t; qbvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z); tfar = ssef(isect_t); # if BVH_FEATURE(BVH_HAIR) dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z)); # endif idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); # ifdef __KERNEL_AVX2__ P_idir = P*idir; P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); # endif # if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); # endif object = OBJECT_NONE; node_addr = traversal_stack[stack_ptr].addr; --stack_ptr; } #endif /* FEATURE(BVH_INSTANCING) */ } while(node_addr != ENTRYPOINT_SENTINEL); return false; } #undef NODE_INTERSECT