/* SPDX-License-Identifier: Apache-2.0 * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2022 Blender Foundation. */ #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT bvh_node_intersect #else # define NODE_INTERSECT bvh_aligned_node_intersect #endif /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_HAIR: hair curve rendering * BVH_POINTCLOUD: point cloud rendering * BVH_MOTION: motion blur rendering */ #ifndef __KERNEL_GPU__ ccl_device #else ccl_device_inline #endif bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals kg, ccl_private const Ray *ray, IntegratorShadowState state, const uint visibility, const uint max_hits, ccl_private uint *r_num_recorded_hits, ccl_private float *r_throughput) { /* todo: * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversal_stack[BVH_STACK_SIZE]; traversal_stack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stack_ptr = 0; int node_addr = kernel_data.bvh.root; /* ray parameters in registers */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); float tmin = ray->tmin; int object = OBJECT_NONE; uint num_hits = 0; /* Max distance in world space. May be dynamically reduced when max number of * recorded hits is exceeded and we no longer need to find hits beyond the max * distance found. */ const float tmax = ray->tmax; float tmax_hits = tmax; *r_num_recorded_hits = 0; *r_throughput = 1.0f; /* traversal loop */ do { do { /* traverse internal nodes */ while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { int node_addr_child1, traverse_mask; float dist[2]; float4 cnodes = kernel_data_fetch(bvh_nodes, node_addr + 0); traverse_mask = NODE_INTERSECT(kg, P, #if BVH_FEATURE(BVH_HAIR) dir, #endif idir, tmin, tmax, node_addr, visibility, dist); node_addr = __float_as_int(cnodes.z); node_addr_child1 = __float_as_int(cnodes.w); if (traverse_mask == 3) { /* Both children were intersected, push the farther one. */ bool is_closest_child1 = (dist[1] < dist[0]); if (is_closest_child1) { int tmp = node_addr; node_addr = node_addr_child1; node_addr_child1 = tmp; } ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = node_addr_child1; } else { /* One child was intersected. */ if (traverse_mask == 2) { node_addr = node_addr_child1; } else if (traverse_mask == 0) { /* Neither child was intersected. */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } } /* if node is leaf, fetch triangle list */ if (node_addr < 0) { float4 leaf = kernel_data_fetch(bvh_leaf_nodes, (-node_addr - 1)); int prim_addr = __float_as_int(leaf.x); if (prim_addr >= 0) { const int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); /* pop */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; /* primitive intersection */ for (; prim_addr < prim_addr2; prim_addr++) { kernel_assert((kernel_data_fetch(prim_type, prim_addr) & PRIMITIVE_ALL) == (type & PRIMITIVE_ALL)); bool hit; /* todo: specialized intersect functions which don't fill in * isect unless needed and check SD_HAS_TRANSPARENT_SHADOW? * might give a few % performance improvement */ Intersection isect ccl_optional_struct_init; const int prim_object = (object == OBJECT_NONE) ? kernel_data_fetch(prim_object, prim_addr) : object; const int prim = kernel_data_fetch(prim_index, prim_addr); if (intersection_skip_self_shadow(ray->self, prim_object, prim)) { continue; } switch (type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { hit = triangle_intersect( kg, &isect, P, dir, tmin, tmax, visibility, prim_object, prim, prim_addr); break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { hit = motion_triangle_intersect(kg, &isect, P, dir, tmin, tmax, ray->time, visibility, prim_object, prim, prim_addr); break; } #endif #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE_THICK: case PRIMITIVE_MOTION_CURVE_THICK: case PRIMITIVE_CURVE_RIBBON: case PRIMITIVE_MOTION_CURVE_RIBBON: { if ((type & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) { const float2 prim_time = kernel_data_fetch(prim_time, prim_addr); if (ray->time < prim_time.x || ray->time > prim_time.y) { hit = false; break; } } const int curve_type = kernel_data_fetch(prim_type, prim_addr); hit = curve_intersect( kg, &isect, P, dir, tmin, tmax, prim_object, prim, ray->time, curve_type); break; } #endif #if BVH_FEATURE(BVH_POINTCLOUD) case PRIMITIVE_POINT: case PRIMITIVE_MOTION_POINT: { if ((type & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) { const float2 prim_time = kernel_data_fetch(prim_time, prim_addr); if (ray->time < prim_time.x || ray->time > prim_time.y) { hit = false; break; } } const int point_type = kernel_data_fetch(prim_type, prim_addr); hit = point_intersect( kg, &isect, P, dir, tmin, tmax, prim_object, prim, ray->time, point_type); break; } #endif /* BVH_FEATURE(BVH_POINTCLOUD) */ default: { hit = false; break; } } /* shadow ray early termination */ if (hit) { /* detect if this surface has a shader with transparent shadows */ /* todo: optimize so primitive visibility flag indicates if * the primitive has a transparent shadow shader? */ const int flags = intersection_get_shader_flags(kg, isect.prim, isect.type); if (!(flags & SD_HAS_TRANSPARENT_SHADOW) || num_hits >= max_hits) { /* If no transparent shadows, all light is blocked and we can * stop immediately. */ return true; } num_hits++; bool record_intersection = true; /* Always use baked shadow transparency for curves. */ if (isect.type & PRIMITIVE_CURVE) { *r_throughput *= intersection_curve_shadow_transparency( kg, isect.object, isect.prim, isect.type, isect.u); if (*r_throughput < CURVE_SHADOW_TRANSPARENCY_CUTOFF) { return true; } else { record_intersection = false; } } if (record_intersection) { /* Test if we need to record this transparent intersection. */ const uint max_record_hits = min(max_hits, INTEGRATOR_SHADOW_ISECT_SIZE); if (*r_num_recorded_hits < max_record_hits || isect.t < tmax_hits) { /* If maximum number of hits was reached, replace the intersection with the * highest distance. We want to find the N closest intersections. */ const uint num_recorded_hits = min(*r_num_recorded_hits, max_record_hits); uint isect_index = num_recorded_hits; if (num_recorded_hits + 1 >= max_record_hits) { float max_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, 0, t); uint max_recorded_hit = 0; for (uint i = 1; i < num_recorded_hits; ++i) { const float isect_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, i, t); if (isect_t > max_t) { max_recorded_hit = i; max_t = isect_t; } } if (num_recorded_hits >= max_record_hits) { isect_index = max_recorded_hit; } /* Limit the ray distance and stop counting hits beyond this. */ tmax_hits = max(isect.t, max_t); } integrator_state_write_shadow_isect(state, &isect, isect_index); } /* Always increase the number of recorded hits, even beyond the maximum, * so that we can detect this and trace another ray if needed. */ ++(*r_num_recorded_hits); } } } } else { /* instance push */ object = kernel_data_fetch(prim_object, -prim_addr - 1); #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir); #else bvh_instance_push(kg, object, ray, &P, &dir, &idir); #endif ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL; node_addr = kernel_data_fetch(object_node, object); } } } while (node_addr != ENTRYPOINT_SENTINEL); if (stack_ptr >= 0) { kernel_assert(object != OBJECT_NONE); /* Instance pop. */ bvh_instance_pop(ray, &P, &dir, &idir); object = OBJECT_NONE; node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } while (node_addr != ENTRYPOINT_SENTINEL); return false; } ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals kg, ccl_private const Ray *ray, IntegratorShadowState state, const uint visibility, const uint max_hits, ccl_private uint *num_recorded_hits, ccl_private float *throughput) { return BVH_FUNCTION_FULL_NAME(BVH)( kg, ray, state, visibility, max_hits, num_recorded_hits, throughput); } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES #undef NODE_INTERSECT