/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2013, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if BVH_FEATURE(BVH_HAIR) # define NODE_INTERSECT bvh_node_intersect #else # define NODE_INTERSECT bvh_aligned_node_intersect #endif /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_HAIR: hair curve rendering * BVH_POINTCLOUD: point cloud rendering * BVH_MOTION: motion blur rendering */ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals kg, ccl_private const Ray *ray, ccl_private Intersection *isect, const uint visibility) { /* todo: * - test if pushing distance on the stack helps (for non shadow rays) * - separate version for shadow rays * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversal_stack[BVH_STACK_SIZE]; traversal_stack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stack_ptr = 0; int node_addr = kernel_data.bvh.root; /* ray parameters in registers */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; #if BVH_FEATURE(BVH_MOTION) Transform ob_itfm; #endif isect->t = ray->t; isect->u = 0.0f; isect->v = 0.0f; isect->prim = PRIM_NONE; isect->object = OBJECT_NONE; /* traversal loop */ do { do { /* traverse internal nodes */ while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) { int node_addr_child1, traverse_mask; float dist[2]; float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr + 0); { traverse_mask = NODE_INTERSECT(kg, P, #if BVH_FEATURE(BVH_HAIR) dir, #endif idir, isect->t, node_addr, visibility, dist); } node_addr = __float_as_int(cnodes.z); node_addr_child1 = __float_as_int(cnodes.w); if (traverse_mask == 3) { /* Both children were intersected, push the farther one. */ bool is_closest_child1 = (dist[1] < dist[0]); if (is_closest_child1) { int tmp = node_addr; node_addr = node_addr_child1; node_addr_child1 = tmp; } ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = node_addr_child1; } else { /* One child was intersected. */ if (traverse_mask == 2) { node_addr = node_addr_child1; } else if (traverse_mask == 0) { /* Neither child was intersected. */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } } /* if node is leaf, fetch triangle list */ if (node_addr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr - 1)); int prim_addr = __float_as_int(leaf.x); if (prim_addr >= 0) { const int prim_addr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); /* pop */ node_addr = traversal_stack[stack_ptr]; --stack_ptr; /* primitive intersection */ switch (type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { for (; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); const int prim_object = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, prim_addr) : object; const int prim = kernel_tex_fetch(__prim_index, prim_addr); if (triangle_intersect( kg, isect, P, dir, isect->t, visibility, prim_object, prim, prim_addr)) { /* shadow ray early termination */ if (visibility & PATH_RAY_SHADOW_OPAQUE) return true; } } break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { for (; prim_addr < prim_addr2; prim_addr++) { kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type); const int prim_object = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, prim_addr) : object; const int prim = kernel_tex_fetch(__prim_index, prim_addr); if (motion_triangle_intersect(kg, isect, P, dir, isect->t, ray->time, visibility, prim_object, prim, prim_addr)) { /* shadow ray early termination */ if (visibility & PATH_RAY_SHADOW_OPAQUE) return true; } } break; } #endif /* BVH_FEATURE(BVH_MOTION) */ #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE_THICK: case PRIMITIVE_MOTION_CURVE_THICK: case PRIMITIVE_CURVE_RIBBON: case PRIMITIVE_MOTION_CURVE_RIBBON: { for (; prim_addr < prim_addr2; prim_addr++) { if ((type & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) { const float2 prim_time = kernel_tex_fetch(__prim_time, prim_addr); if (ray->time < prim_time.x || ray->time > prim_time.y) { continue; } } const int prim_object = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, prim_addr) : object; const int prim = kernel_tex_fetch(__prim_index, prim_addr); const int curve_type = kernel_tex_fetch(__prim_type, prim_addr); const bool hit = curve_intersect( kg, isect, P, dir, isect->t, prim_object, prim, ray->time, curve_type); if (hit) { /* shadow ray early termination */ if (visibility & PATH_RAY_SHADOW_OPAQUE) return true; } } break; } #endif /* BVH_FEATURE(BVH_HAIR) */ #if BVH_FEATURE(BVH_POINTCLOUD) case PRIMITIVE_POINT: case PRIMITIVE_MOTION_POINT: { for (; prim_addr < prim_addr2; prim_addr++) { if ((type & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) { const float2 prim_time = kernel_tex_fetch(__prim_time, prim_addr); if (ray->time < prim_time.x || ray->time > prim_time.y) { continue; } } const int prim_object = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, prim_addr) : object; const int prim = kernel_tex_fetch(__prim_index, prim_addr); const int point_type = kernel_tex_fetch(__prim_type, prim_addr); const bool hit = point_intersect( kg, isect, P, dir, isect->t, prim_object, prim, ray->time, point_type); if (hit) { /* shadow ray early termination */ if (visibility & PATH_RAY_SHADOW_OPAQUE) return true; } } break; } #endif /* BVH_FEATURE(BVH_POINTCLOUD) */ } } else { /* instance push */ object = kernel_tex_fetch(__prim_object, -prim_addr - 1); #if BVH_FEATURE(BVH_MOTION) isect->t *= bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &ob_itfm); #else isect->t *= bvh_instance_push(kg, object, ray, &P, &dir, &idir); #endif ++stack_ptr; kernel_assert(stack_ptr < BVH_STACK_SIZE); traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL; node_addr = kernel_tex_fetch(__object_node, object); } } } while (node_addr != ENTRYPOINT_SENTINEL); if (stack_ptr >= 0) { kernel_assert(object != OBJECT_NONE); /* instance pop */ #if BVH_FEATURE(BVH_MOTION) isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm); #else isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t); #endif object = OBJECT_NONE; node_addr = traversal_stack[stack_ptr]; --stack_ptr; } } while (node_addr != ENTRYPOINT_SENTINEL); return (isect->prim != PRIM_NONE); } ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals kg, ccl_private const Ray *ray, ccl_private Intersection *isect, const uint visibility) { return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect, visibility); } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES #undef NODE_INTERSECT