/* * Adapted from Open Shading Language with this license: * * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al. * All Rights Reserved. * * Modifications Copyright 2011, Blender Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sony Pictures Imageworks nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __BSDF_HAIR_H__ #define __BSDF_HAIR_H__ CCL_NAMESPACE_BEGIN ccl_device void bsdf_hair_reflection_blur(ShaderClosure *sc, float roughness) { } ccl_device void bsdf_hair_transmission_blur(ShaderClosure *sc, float roughness) { } ccl_device int bsdf_hair_reflection_setup(ShaderClosure *sc) { sc->type = CLOSURE_BSDF_HAIR_REFLECTION_ID; sc->data0 = clamp(sc->data0, 0.001f, 1.0f); sc->data1 = clamp(sc->data1, 0.001f, 1.0f); return SD_BSDF|SD_BSDF_HAS_EVAL; } ccl_device int bsdf_hair_transmission_setup(ShaderClosure *sc) { sc->type = CLOSURE_BSDF_HAIR_TRANSMISSION_ID; sc->data0 = clamp(sc->data0, 0.001f, 1.0f); sc->data1 = clamp(sc->data1, 0.001f, 1.0f); return SD_BSDF|SD_BSDF_HAS_EVAL; } ccl_device float3 bsdf_hair_reflection_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { #ifdef __HAIR__ float offset = sc->data2; float3 Tg = sc->T; #else float offset = 0.0f; float3 Tg = make_float3(1.0f, 0.0f, 0.0f); #endif float roughness1 = sc->data0; float roughness2 = sc->data1; float Iz = dot(Tg, I); float3 locy = normalize(I - Tg * Iz); //float3 locx = cross(locy, Tg); float theta_r = M_PI_2_F - safe_acosf(Iz); float omega_in_z = dot(Tg, omega_in); float3 omega_in_y = normalize(omega_in - Tg * omega_in_z); float theta_i = M_PI_2_F - safe_acosf(omega_in_z); float cosphi_i = dot(omega_in_y, locy); if(M_PI_2_F - fabsf(theta_i) < 0.001f || cosphi_i < 0.0f) { *pdf = 0.0f; return make_float3(*pdf, *pdf, *pdf); } float phi_i = safe_acosf(cosphi_i) / roughness2; phi_i = fabsf(phi_i) < M_PI_F ? phi_i : M_PI_F; float costheta_i = cosf(theta_i); float a_R = atan2f(((M_PI_2_F + theta_r) * 0.5f - offset) / roughness1, 1.0f); float b_R = atan2f(((-M_PI_2_F + theta_r) * 0.5f - offset) / roughness1, 1.0f); float theta_h = (theta_i + theta_r) * 0.5f; float t = theta_h - offset; float phi_pdf = cosf(phi_i * 0.5f) * 0.25f / roughness2; float theta_pdf = roughness1 / (2 * (t*t + roughness1*roughness1) * (a_R - b_R)* costheta_i); *pdf = phi_pdf * theta_pdf; return make_float3(*pdf, *pdf, *pdf); } ccl_device float3 bsdf_hair_transmission_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { return make_float3(0.0f, 0.0f, 0.0f); } ccl_device float3 bsdf_hair_reflection_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { return make_float3(0.0f, 0.0f, 0.0f); } ccl_device float3 bsdf_hair_transmission_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { #ifdef __HAIR__ float offset = sc->data2; float3 Tg = sc->T; #else float offset = 0.0f; float3 Tg = make_float3(1.0f, 0.0f, 0.0f); #endif float roughness1 = sc->data0; float roughness2 = sc->data1; float Iz = dot(Tg, I); float3 locy = normalize(I - Tg * Iz); //float3 locx = cross(locy, Tg); float theta_r = M_PI_2_F - safe_acosf(Iz); float omega_in_z = dot(Tg, omega_in); float3 omega_in_y = normalize(omega_in - Tg * omega_in_z); float theta_i = M_PI_2_F - safe_acosf(omega_in_z); float phi_i = safe_acosf(dot(omega_in_y, locy)); if(M_PI_2_F - fabsf(theta_i) < 0.001f) { *pdf = 0.0f; return make_float3(*pdf, *pdf, *pdf); } float costheta_i = cosf(theta_i); float a_TT = atan2f(((M_PI_2_F + theta_r)/2 - offset) / roughness1, 1.0f); float b_TT = atan2f(((-M_PI_2_F + theta_r)/2 - offset) / roughness1, 1.0f); float c_TT = 2 * atan2f(M_PI_2_F / roughness2, 1.0f); float theta_h = (theta_i + theta_r) / 2; float t = theta_h - offset; float phi = fabsf(phi_i); float p = M_PI_F - phi; float theta_pdf = roughness1 / (2 * (t*t + roughness1 * roughness1) * (a_TT - b_TT)*costheta_i); float phi_pdf = roughness2 / (c_TT * (p * p + roughness2 * roughness2)); *pdf = phi_pdf * theta_pdf; return make_float3(*pdf, *pdf, *pdf); } ccl_device int bsdf_hair_reflection_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { #ifdef __HAIR__ float offset = sc->data2; float3 Tg = sc->T; #else float offset = 0.0f; float3 Tg = make_float3(1.0f, 0.0f, 0.0f); #endif float roughness1 = sc->data0; float roughness2 = sc->data1; float Iz = dot(Tg, I); float3 locy = normalize(I - Tg * Iz); float3 locx = cross(locy, Tg); float theta_r = M_PI_2_F - safe_acosf(Iz); float a_R = atan2f(((M_PI_2_F + theta_r) * 0.5f - offset) / roughness1, 1.0f); float b_R = atan2f(((-M_PI_2_F + theta_r) * 0.5f - offset) / roughness1, 1.0f); float t = roughness1 * tanf(randu * (a_R - b_R) + b_R); float theta_h = t + offset; float theta_i = 2 * theta_h - theta_r; float costheta_i = cosf(theta_i); float sintheta_i = sinf(theta_i); float phi = 2 * safe_asinf(1 - 2 * randv) * roughness2; float phi_pdf = cosf(phi * 0.5f) * 0.25f / roughness2; float theta_pdf = roughness1 / (2 * (t*t + roughness1*roughness1) * (a_R - b_R)*costheta_i); *omega_in =(cosf(phi) * costheta_i) * locy - (sinf(phi) * costheta_i) * locx + ( sintheta_i) * Tg; //differentials - TODO: find a better approximation for the reflective bounce #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = 2 * dot(locy, dIdx) * locy - dIdx; *domega_in_dy = 2 * dot(locy, dIdy) * locy - dIdy; #endif *pdf = fabsf(phi_pdf * theta_pdf); if(M_PI_2_F - fabsf(theta_i) < 0.001f) *pdf = 0.0f; *eval = make_float3(*pdf, *pdf, *pdf); if(dot(locy, *omega_in) < 0.0f) { return LABEL_REFLECT|LABEL_TRANSMIT|LABEL_GLOSSY; } return LABEL_REFLECT|LABEL_GLOSSY; } ccl_device int bsdf_hair_transmission_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { #ifdef __HAIR__ float offset = sc->data2; float3 Tg = sc->T; #else float offset = 0.0f; float3 Tg = make_float3(1.0f, 0.0f, 0.0f); #endif float roughness1 = sc->data0; float roughness2 = sc->data1; float Iz = dot(Tg, I); float3 locy = normalize(I - Tg * Iz); float3 locx = cross(locy, Tg); float theta_r = M_PI_2_F - safe_acosf(Iz); float a_TT = atan2f(((M_PI_2_F + theta_r)/2 - offset) / roughness1, 1.0f); float b_TT = atan2f(((-M_PI_2_F + theta_r)/2 - offset) / roughness1, 1.0f); float c_TT = 2 * atan2f(M_PI_2_F / roughness2, 1.0f); float t = roughness1 * tanf(randu * (a_TT - b_TT) + b_TT); float theta_h = t + offset; float theta_i = 2 * theta_h - theta_r; float costheta_i = cosf(theta_i); float sintheta_i = sinf(theta_i); float p = roughness2 * tanf(c_TT * (randv - 0.5f)); float phi = p + M_PI_F; float theta_pdf = roughness1 / (2 * (t*t + roughness1*roughness1) * (a_TT - b_TT) * costheta_i); float phi_pdf = roughness2 / (c_TT * (p * p + roughness2 * roughness2)); *omega_in =(cosf(phi) * costheta_i) * locy - (sinf(phi) * costheta_i) * locx + ( sintheta_i) * Tg; //differentials - TODO: find a better approximation for the transmission bounce #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = 2 * dot(locy, dIdx) * locy - dIdx; *domega_in_dy = 2 * dot(locy, dIdy) * locy - dIdy; #endif *pdf = fabsf(phi_pdf * theta_pdf); if(M_PI_2_F - fabsf(theta_i) < 0.001f) { *pdf = 0.0f; } *eval = make_float3(*pdf, *pdf, *pdf); if(dot(locy, *omega_in) < 0.0f) return LABEL_TRANSMIT|LABEL_GLOSSY; return LABEL_GLOSSY; } CCL_NAMESPACE_END #endif /* __BSDF_HAIR_H__ */