/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __BSDF_OREN_NAYAR_H__ #define __BSDF_OREN_NAYAR_H__ CCL_NAMESPACE_BEGIN typedef ccl_addr_space struct OrenNayarBsdf { SHADER_CLOSURE_BASE; float roughness; float a; float b; } OrenNayarBsdf; static_assert(sizeof(ShaderClosure) >= sizeof(OrenNayarBsdf), "OrenNayarBsdf is too large!"); ccl_device float3 bsdf_oren_nayar_get_intensity(const ShaderClosure *sc, float3 n, float3 v, float3 l) { const OrenNayarBsdf *bsdf = (const OrenNayarBsdf *)sc; float nl = max(dot(n, l), 0.0f); float nv = max(dot(n, v), 0.0f); float t = dot(l, v) - nl * nv; if (t > 0.0f) t /= max(nl, nv) + FLT_MIN; float is = nl * (bsdf->a + bsdf->b * t); return make_float3(is, is, is); } ccl_device int bsdf_oren_nayar_setup(OrenNayarBsdf *bsdf) { float sigma = bsdf->roughness; bsdf->type = CLOSURE_BSDF_OREN_NAYAR_ID; sigma = saturate(sigma); float div = 1.0f / (M_PI_F + ((3.0f * M_PI_F - 4.0f) / 6.0f) * sigma); bsdf->a = 1.0f * div; bsdf->b = sigma * div; return SD_BSDF | SD_BSDF_HAS_EVAL; } ccl_device bool bsdf_oren_nayar_merge(const ShaderClosure *a, const ShaderClosure *b) { const OrenNayarBsdf *bsdf_a = (const OrenNayarBsdf *)a; const OrenNayarBsdf *bsdf_b = (const OrenNayarBsdf *)b; return (isequal_float3(bsdf_a->N, bsdf_b->N)) && (bsdf_a->roughness == bsdf_b->roughness); } ccl_device float3 bsdf_oren_nayar_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { const OrenNayarBsdf *bsdf = (const OrenNayarBsdf *)sc; if (dot(bsdf->N, omega_in) > 0.0f) { *pdf = 0.5f * M_1_PI_F; return bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, omega_in); } else { *pdf = 0.0f; return make_float3(0.0f, 0.0f, 0.0f); } } ccl_device float3 bsdf_oren_nayar_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { return make_float3(0.0f, 0.0f, 0.0f); } ccl_device int bsdf_oren_nayar_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { const OrenNayarBsdf *bsdf = (const OrenNayarBsdf *)sc; sample_uniform_hemisphere(bsdf->N, randu, randv, omega_in, pdf); if (dot(Ng, *omega_in) > 0.0f) { *eval = bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, *omega_in); #ifdef __RAY_DIFFERENTIALS__ // TODO: find a better approximation for the bounce *domega_in_dx = (2.0f * dot(bsdf->N, dIdx)) * bsdf->N - dIdx; *domega_in_dy = (2.0f * dot(bsdf->N, dIdy)) * bsdf->N - dIdy; #endif } else { *pdf = 0.0f; *eval = make_float3(0.0f, 0.0f, 0.0f); } return LABEL_REFLECT | LABEL_DIFFUSE; } CCL_NAMESPACE_END #endif /* __BSDF_OREN_NAYAR_H__ */