/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ #pragma once CCL_NAMESPACE_BEGIN /* VOLUME EXTINCTION */ ccl_device void volume_extinction_setup(ccl_private ShaderData *sd, Spectrum weight) { if (sd->flag & SD_EXTINCTION) { sd->closure_transparent_extinction += weight; } else { sd->flag |= SD_EXTINCTION; sd->closure_transparent_extinction = weight; } } /* HENYEY-GREENSTEIN CLOSURE */ typedef struct HenyeyGreensteinVolume { SHADER_CLOSURE_BASE; float g; } HenyeyGreensteinVolume; static_assert(sizeof(ShaderClosure) >= sizeof(HenyeyGreensteinVolume), "HenyeyGreensteinVolume is too large!"); /* Given cosine between rays, return probability density that a photon bounces * to that direction. The g parameter controls how different it is from the * uniform sphere. g=0 uniform diffuse-like, g=1 close to sharp single ray. */ ccl_device float single_peaked_henyey_greenstein(float cos_theta, float g) { return ((1.0f - g * g) / safe_powf(1.0f + g * g - 2.0f * g * cos_theta, 1.5f)) * (M_1_PI_F * 0.25f); }; ccl_device int volume_henyey_greenstein_setup(ccl_private HenyeyGreensteinVolume *volume) { volume->type = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID; /* clamp anisotropy to avoid delta function */ volume->g = signf(volume->g) * min(fabsf(volume->g), 1.0f - 1e-3f); return SD_SCATTER; } ccl_device Spectrum volume_henyey_greenstein_eval_phase(ccl_private const ShaderVolumeClosure *svc, const float3 I, float3 omega_in, ccl_private float *pdf) { float g = svc->g; /* note that I points towards the viewer */ if (fabsf(g) < 1e-3f) { *pdf = M_1_PI_F * 0.25f; } else { float cos_theta = dot(-I, omega_in); *pdf = single_peaked_henyey_greenstein(cos_theta, g); } return make_spectrum(*pdf); } ccl_device float3 henyey_greenstrein_sample(float3 D, float g, float randu, float randv, ccl_private float *pdf) { /* match pdf for small g */ float cos_theta; bool isotropic = fabsf(g) < 1e-3f; if (isotropic) { cos_theta = (1.0f - 2.0f * randu); if (pdf) { *pdf = M_1_PI_F * 0.25f; } } else { float k = (1.0f - g * g) / (1.0f - g + 2.0f * g * randu); cos_theta = (1.0f + g * g - k * k) / (2.0f * g); if (pdf) { *pdf = single_peaked_henyey_greenstein(cos_theta, g); } } float sin_theta = safe_sqrtf(1.0f - cos_theta * cos_theta); float phi = M_2PI_F * randv; float3 dir = make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cos_theta); float3 T, B; make_orthonormals(D, &T, &B); dir = dir.x * T + dir.y * B + dir.z * D; return dir; } ccl_device int volume_henyey_greenstein_sample(ccl_private const ShaderVolumeClosure *svc, float3 I, float randu, float randv, ccl_private Spectrum *eval, ccl_private float3 *omega_in, ccl_private float *pdf) { float g = svc->g; /* note that I points towards the viewer and so is used negated */ *omega_in = henyey_greenstrein_sample(-I, g, randu, randv, pdf); *eval = make_spectrum(*pdf); /* perfect importance sampling */ return LABEL_VOLUME_SCATTER; } /* VOLUME CLOSURE */ ccl_device Spectrum volume_phase_eval(ccl_private const ShaderData *sd, ccl_private const ShaderVolumeClosure *svc, float3 omega_in, ccl_private float *pdf) { return volume_henyey_greenstein_eval_phase(svc, sd->I, omega_in, pdf); } ccl_device int volume_phase_sample(ccl_private const ShaderData *sd, ccl_private const ShaderVolumeClosure *svc, float randu, float randv, ccl_private Spectrum *eval, ccl_private float3 *omega_in, ccl_private float *pdf) { return volume_henyey_greenstein_sample(svc, sd->I, randu, randv, eval, omega_in, pdf); } /* Volume sampling utilities. */ /* todo: this value could be tweaked or turned into a probability to avoid * unnecessary work in volumes and subsurface scattering. */ #define VOLUME_THROUGHPUT_EPSILON 1e-6f ccl_device Spectrum volume_color_transmittance(Spectrum sigma, float t) { return exp(-sigma * t); } ccl_device float volume_channel_get(Spectrum value, int channel) { return GET_SPECTRUM_CHANNEL(value, channel); } ccl_device int volume_sample_channel(Spectrum albedo, Spectrum throughput, float rand, ccl_private Spectrum *pdf) { /* Sample color channel proportional to throughput and single scattering * albedo, to significantly reduce noise with many bounce, following: * * "Practical and Controllable Subsurface Scattering for Production Path * Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */ Spectrum weights = fabs(throughput * albedo); float sum_weights = reduce_add(weights); if (sum_weights > 0.0f) { *pdf = weights / sum_weights; } else { *pdf = make_spectrum(1.0f / SPECTRUM_CHANNELS); } float pdf_sum = 0.0f; FOREACH_SPECTRUM_CHANNEL (i) { pdf_sum += GET_SPECTRUM_CHANNEL(*pdf, i); if (rand < pdf_sum) { return i; } } return SPECTRUM_CHANNELS - 1; } CCL_NAMESPACE_END