/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2013, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef __QBVH__ #include "geom_qbvh_shadow.h" #endif /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_HAIR: hair curve rendering * BVH_MOTION: motion blur rendering * */ ccl_device bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint max_hits, uint *num_hits) { /* todo: * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversalStack[BVH_STACK_SIZE]; traversalStack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* ray parameters in registers */ const float tmax = ray->t; float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = tmax; #if BVH_FEATURE(BVH_MOTION) Transform ob_tfm; #endif #if BVH_FEATURE(BVH_INSTANCING) int num_hits_in_instance = 0; #endif *num_hits = 0; isect_array->t = tmax; #if defined(__KERNEL_SSE2__) const shuffle_swap_t shuf_identity = shuffle_swap_identity(); const shuffle_swap_t shuf_swap = shuffle_swap_swap(); const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000)); ssef Psplat[3], idirsplat[3]; shuffle_swap_t shufflexyz[3]; Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); ssef tsplat(0.0f, 0.0f, -isect_t, -isect_t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif IsectPrecalc isect_precalc; triangle_intersect_precalc(dir, &isect_precalc); /* traversal loop */ do { do { /* traverse internal nodes */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { bool traverseChild0, traverseChild1; int nodeAddrChild1; #if !defined(__KERNEL_SSE2__) /* Intersect two child bounding boxes, non-SSE version */ float t = isect_t; /* fetch node data */ float4 node0 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0); float4 node1 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1); float4 node2 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2); float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3); /* intersect ray against child nodes */ NO_EXTENDED_PRECISION float c0lox = (node0.x - P.x) * idir.x; NO_EXTENDED_PRECISION float c0hix = (node0.z - P.x) * idir.x; NO_EXTENDED_PRECISION float c0loy = (node1.x - P.y) * idir.y; NO_EXTENDED_PRECISION float c0hiy = (node1.z - P.y) * idir.y; NO_EXTENDED_PRECISION float c0loz = (node2.x - P.z) * idir.z; NO_EXTENDED_PRECISION float c0hiz = (node2.z - P.z) * idir.z; NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f); NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t); NO_EXTENDED_PRECISION float c1lox = (node0.y - P.x) * idir.x; NO_EXTENDED_PRECISION float c1hix = (node0.w - P.x) * idir.x; NO_EXTENDED_PRECISION float c1loy = (node1.y - P.y) * idir.y; NO_EXTENDED_PRECISION float c1hiy = (node1.w - P.y) * idir.y; NO_EXTENDED_PRECISION float c1loz = (node2.y - P.z) * idir.z; NO_EXTENDED_PRECISION float c1hiz = (node2.w - P.z) * idir.z; NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f); NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t); /* decide which nodes to traverse next */ #ifdef __VISIBILITY_FLAG__ /* this visibility test gives a 5% performance hit, how to solve? */ traverseChild0 = (c0max >= c0min) && (__float_as_uint(cnodes.z) & PATH_RAY_SHADOW); traverseChild1 = (c1max >= c1min) && (__float_as_uint(cnodes.w) & PATH_RAY_SHADOW); #else traverseChild0 = (c0max >= c0min); traverseChild1 = (c1max >= c1min); #endif #else // __KERNEL_SSE2__ /* Intersect two child bounding boxes, SSE3 version adapted from Embree */ /* fetch node data */ const ssef *bvh_nodes = (ssef*)kg->__bvh_nodes.data + nodeAddr*BVH_NODE_SIZE; const float4 cnodes = ((float4*)bvh_nodes)[3]; /* intersect ray against child nodes */ const ssef tminmaxx = (shuffle_swap(bvh_nodes[0], shufflexyz[0]) - Psplat[0]) * idirsplat[0]; const ssef tminmaxy = (shuffle_swap(bvh_nodes[1], shufflexyz[1]) - Psplat[1]) * idirsplat[1]; const ssef tminmaxz = (shuffle_swap(bvh_nodes[2], shufflexyz[2]) - Psplat[2]) * idirsplat[2]; /* calculate { c0min, c1min, -c0max, -c1max} */ const ssef minmax = max(max(tminmaxx, tminmaxy), max(tminmaxz, tsplat)); const ssef tminmax = minmax ^ pn; const sseb lrhit = tminmax <= shuffle<2, 3, 0, 1>(tminmax); /* decide which nodes to traverse next */ #ifdef __VISIBILITY_FLAG__ /* this visibility test gives a 5% performance hit, how to solve? */ traverseChild0 = (movemask(lrhit) & 1) && (__float_as_uint(cnodes.z) & PATH_RAY_SHADOW); traverseChild1 = (movemask(lrhit) & 2) && (__float_as_uint(cnodes.w) & PATH_RAY_SHADOW); #else traverseChild0 = (movemask(lrhit) & 1); traverseChild1 = (movemask(lrhit) & 2); #endif #endif // __KERNEL_SSE2__ nodeAddr = __float_as_int(cnodes.x); nodeAddrChild1 = __float_as_int(cnodes.y); if(traverseChild0 && traverseChild1) { /* both children were intersected, push the farther one */ #if !defined(__KERNEL_SSE2__) bool closestChild1 = (c1min < c0min); #else bool closestChild1 = tminmax[1] < tminmax[0]; #endif if(closestChild1) { int tmp = nodeAddr; nodeAddr = nodeAddrChild1; nodeAddrChild1 = tmp; } ++stackPtr; kernel_assert(stackPtr < BVH_STACK_SIZE); traversalStack[stackPtr] = nodeAddrChild1; } else { /* one child was intersected */ if(traverseChild1) { nodeAddr = nodeAddrChild1; } else if(!traverseChild0) { /* neither child was intersected */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } } } /* if node is leaf, fetch triangle list */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+3); int primAddr = __float_as_int(leaf.x); #if BVH_FEATURE(BVH_INSTANCING) if(primAddr >= 0) { #endif const int primAddr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); const uint p_type = type & PRIMITIVE_ALL; /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; /* primitive intersection */ while(primAddr < primAddr2) { kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); bool hit; /* todo: specialized intersect functions which don't fill in * isect unless needed and check SD_HAS_TRANSPARENT_SHADOW? * might give a few % performance improvement */ switch(p_type) { case PRIMITIVE_TRIANGLE: { hit = triangle_intersect(kg, &isect_precalc, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr); break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, PATH_RAY_SHADOW, object, primAddr); break; } #endif #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE: case PRIMITIVE_MOTION_CURVE: { if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) hit = bvh_cardinal_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0); else hit = bvh_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0); break; } #endif default: { hit = false; break; } } /* shadow ray early termination */ if(hit) { /* detect if this surface has a shader with transparent shadows */ /* todo: optimize so primitive visibility flag indicates if * the primitive has a transparent shadow shader? */ int prim = kernel_tex_fetch(__prim_index, isect_array->prim); int shader = 0; #ifdef __HAIR__ if(kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE) #endif { shader = kernel_tex_fetch(__tri_shader, prim); } #ifdef __HAIR__ else { float4 str = kernel_tex_fetch(__curves, prim); shader = __float_as_int(str.z); } #endif int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*2); /* if no transparent shadows, all light is blocked */ if(!(flag & SD_HAS_TRANSPARENT_SHADOW)) { return true; } /* if maximum number of hits reached, block all light */ else if(*num_hits == max_hits) { return true; } /* move on to next entry in intersections array */ isect_array++; (*num_hits)++; #if BVH_FEATURE(BVH_INSTANCING) num_hits_in_instance++; #endif isect_array->t = isect_t; } primAddr++; } } #if BVH_FEATURE(BVH_INSTANCING) else { /* instance push */ object = kernel_tex_fetch(__prim_object, -primAddr-1); #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm); #else bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t); #endif triangle_intersect_precalc(dir, &isect_precalc); num_hits_in_instance = 0; isect_array->t = isect_t; #if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif ++stackPtr; kernel_assert(stackPtr < BVH_STACK_SIZE); traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); #if BVH_FEATURE(BVH_INSTANCING) if(stackPtr >= 0) { kernel_assert(object != OBJECT_NONE); if(num_hits_in_instance) { float t_fac; #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_tfm); #else bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac); #endif triangle_intersect_precalc(dir, &isect_precalc); /* scale isect->t to adjust for instancing */ for(int i = 0; i < num_hits_in_instance; i++) (isect_array-i-1)->t *= t_fac; } else { float ignore_t = FLT_MAX; #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_tfm); #else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t); #endif triangle_intersect_precalc(dir, &isect_precalc); } isect_t = tmax; isect_array->t = isect_t; #if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif object = OBJECT_NONE; nodeAddr = traversalStack[stackPtr]; --stackPtr; } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); return false; } ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint max_hits, uint *num_hits) { #ifdef __QBVH__ if(kernel_data.bvh.use_qbvh) { return BVH_FUNCTION_FULL_NAME(QBVH)(kg, ray, isect_array, max_hits, num_hits); } else #endif { kernel_assert(kernel_data.bvh.use_qbvh == false); return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect_array, max_hits, num_hits); } } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES