/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2013, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef __QBVH__ #include "geom_qbvh_subsurface.h" #endif /* This is a template BVH traversal function for subsurface scattering, where * various features can be enabled/disabled. This way we can compile optimized * versions for each case without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_MOTION: motion blur rendering * */ ccl_device uint BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, int subsurface_object, uint *lcg_state, int max_hits) { /* todo: * - test if pushing distance on the stack helps (for non shadow rays) * - separate version for shadow rays * - likely and unlikely for if() statements * - SSE for hair * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversalStack[BVH_STACK_SIZE]; traversalStack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* ray parameters in registers */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = ray->t; uint num_hits = 0; #if BVH_FEATURE(BVH_MOTION) Transform ob_tfm; #endif #if defined(__KERNEL_SSE2__) const shuffle_swap_t shuf_identity = shuffle_swap_identity(); const shuffle_swap_t shuf_swap = shuffle_swap_swap(); const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000)); ssef Psplat[3], idirsplat[3]; shuffle_swap_t shufflexyz[3]; Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); ssef tsplat(0.0f, 0.0f, -isect_t, -isect_t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif IsectPrecalc isect_precalc; triangle_intersect_precalc(dir, &isect_precalc); /* traversal loop */ do { do { /* traverse internal nodes */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { bool traverseChild0, traverseChild1; int nodeAddrChild1; #if !defined(__KERNEL_SSE2__) /* Intersect two child bounding boxes, non-SSE version */ float t = isect_t; /* fetch node data */ float4 node0 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0); float4 node1 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1); float4 node2 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2); float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3); /* intersect ray against child nodes */ NO_EXTENDED_PRECISION float c0lox = (node0.x - P.x) * idir.x; NO_EXTENDED_PRECISION float c0hix = (node0.z - P.x) * idir.x; NO_EXTENDED_PRECISION float c0loy = (node1.x - P.y) * idir.y; NO_EXTENDED_PRECISION float c0hiy = (node1.z - P.y) * idir.y; NO_EXTENDED_PRECISION float c0loz = (node2.x - P.z) * idir.z; NO_EXTENDED_PRECISION float c0hiz = (node2.z - P.z) * idir.z; NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f); NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t); NO_EXTENDED_PRECISION float c1lox = (node0.y - P.x) * idir.x; NO_EXTENDED_PRECISION float c1hix = (node0.w - P.x) * idir.x; NO_EXTENDED_PRECISION float c1loy = (node1.y - P.y) * idir.y; NO_EXTENDED_PRECISION float c1hiy = (node1.w - P.y) * idir.y; NO_EXTENDED_PRECISION float c1loz = (node2.y - P.z) * idir.z; NO_EXTENDED_PRECISION float c1hiz = (node2.w - P.z) * idir.z; NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f); NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t); /* decide which nodes to traverse next */ traverseChild0 = (c0max >= c0min); traverseChild1 = (c1max >= c1min); #else // __KERNEL_SSE2__ /* Intersect two child bounding boxes, SSE3 version adapted from Embree */ /* fetch node data */ const ssef *bvh_nodes = (ssef*)kg->__bvh_nodes.data + nodeAddr*BVH_NODE_SIZE; const float4 cnodes = ((float4*)bvh_nodes)[3]; /* intersect ray against child nodes */ const ssef tminmaxx = (shuffle_swap(bvh_nodes[0], shufflexyz[0]) - Psplat[0]) * idirsplat[0]; const ssef tminmaxy = (shuffle_swap(bvh_nodes[1], shufflexyz[1]) - Psplat[1]) * idirsplat[1]; const ssef tminmaxz = (shuffle_swap(bvh_nodes[2], shufflexyz[2]) - Psplat[2]) * idirsplat[2]; /* calculate { c0min, c1min, -c0max, -c1max} */ const ssef minmax = max(max(tminmaxx, tminmaxy), max(tminmaxz, tsplat)); const ssef tminmax = minmax ^ pn; const sseb lrhit = tminmax <= shuffle<2, 3, 0, 1>(tminmax); /* decide which nodes to traverse next */ traverseChild0 = (movemask(lrhit) & 1); traverseChild1 = (movemask(lrhit) & 2); #endif // __KERNEL_SSE2__ nodeAddr = __float_as_int(cnodes.x); nodeAddrChild1 = __float_as_int(cnodes.y); if(traverseChild0 && traverseChild1) { /* both children were intersected, push the farther one */ #if !defined(__KERNEL_SSE2__) bool closestChild1 = (c1min < c0min); #else bool closestChild1 = tminmax[1] < tminmax[0]; #endif if(closestChild1) { int tmp = nodeAddr; nodeAddr = nodeAddrChild1; nodeAddrChild1 = tmp; } ++stackPtr; kernel_assert(stackPtr < BVH_STACK_SIZE); traversalStack[stackPtr] = nodeAddrChild1; } else { /* one child was intersected */ if(traverseChild1) { nodeAddr = nodeAddrChild1; } else if(!traverseChild0) { /* neither child was intersected */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } } } /* if node is leaf, fetch triangle list */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+3); int primAddr = __float_as_int(leaf.x); #if BVH_FEATURE(BVH_INSTANCING) if(primAddr >= 0) { #endif const int primAddr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; /* primitive intersection */ switch(type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { /* intersect ray against primitive */ for(; primAddr < primAddr2; primAddr++) { kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); /* only primitives from the same object */ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; if(tri_object != subsurface_object) continue; triangle_intersect_subsurface(kg, &isect_precalc, isect_array, P, dir, object, primAddr, isect_t, &num_hits, lcg_state, max_hits); } break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { /* intersect ray against primitive */ for(; primAddr < primAddr2; primAddr++) { kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); /* only primitives from the same object */ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; if(tri_object != subsurface_object) continue; motion_triangle_intersect_subsurface(kg, isect_array, P, dir, ray->time, object, primAddr, isect_t, &num_hits, lcg_state, max_hits); } break; } #endif default: { break; } } } #if BVH_FEATURE(BVH_INSTANCING) else { /* instance push */ if(subsurface_object == kernel_tex_fetch(__prim_object, -primAddr-1)) { object = subsurface_object; #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm); #else bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t); #endif triangle_intersect_precalc(dir, &isect_precalc); #if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif ++stackPtr; kernel_assert(stackPtr < BVH_STACK_SIZE); traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } else { /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } } } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); #if BVH_FEATURE(BVH_INSTANCING) if(stackPtr >= 0) { kernel_assert(object != OBJECT_NONE); /* instance pop */ #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm); #else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect_t); #endif triangle_intersect_precalc(dir, &isect_precalc); #if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif object = OBJECT_NONE; nodeAddr = traversalStack[stackPtr]; --stackPtr; } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); return num_hits; } ccl_device_inline uint BVH_FUNCTION_NAME(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, int subsurface_object, uint *lcg_state, int max_hits) { #ifdef __QBVH__ if(kernel_data.bvh.use_qbvh) { return BVH_FUNCTION_FULL_NAME(QBVH)(kg, ray, isect_array, subsurface_object, lcg_state, max_hits); } else #endif { kernel_assert(kernel_data.bvh.use_qbvh == false); return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect_array, subsurface_object, lcg_state, max_hits); } } #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES