/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2014, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a template BVH traversal function for volumes, where * various features can be enabled/disabled. This way we can compile optimized * versions for each case without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_HAIR: hair curve rendering * BVH_MOTION: motion blur rendering * */ #define FEATURE(f) (((BVH_FUNCTION_FEATURES) & (f)) != 0) ccl_device bool BVH_FUNCTION_NAME(KernelGlobals *kg, const Ray *ray, Intersection *isect) { /* todo: * - test if pushing distance on the stack helps (for non shadow rays) * - separate version for shadow rays * - likely and unlikely for if() statements * - test restrict attribute for pointers */ /* traversal stack in CUDA thread-local memory */ int traversalStack[BVH_STACK_SIZE]; traversalStack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* ray parameters in registers */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; const uint visibility = PATH_RAY_ALL_VISIBILITY; #if FEATURE(BVH_MOTION) Transform ob_tfm; #endif isect->t = ray->t; isect->u = 0.0f; isect->v = 0.0f; isect->prim = PRIM_NONE; isect->object = OBJECT_NONE; #if defined(__KERNEL_SSE2__) const shuffle_swap_t shuf_identity = shuffle_swap_identity(); const shuffle_swap_t shuf_swap = shuffle_swap_swap(); const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000)); ssef Psplat[3], idirsplat[3]; shuffle_swap_t shufflexyz[3]; Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); ssef tsplat(0.0f, 0.0f, -isect->t, -isect->t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif /* traversal loop */ do { do { /* traverse internal nodes */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { bool traverseChild0, traverseChild1; int nodeAddrChild1; #if !defined(__KERNEL_SSE2__) /* Intersect two child bounding boxes, non-SSE version */ float t = isect->t; /* fetch node data */ float4 node0 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0); float4 node1 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1); float4 node2 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2); float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3); /* intersect ray against child nodes */ NO_EXTENDED_PRECISION float c0lox = (node0.x - P.x) * idir.x; NO_EXTENDED_PRECISION float c0hix = (node0.z - P.x) * idir.x; NO_EXTENDED_PRECISION float c0loy = (node1.x - P.y) * idir.y; NO_EXTENDED_PRECISION float c0hiy = (node1.z - P.y) * idir.y; NO_EXTENDED_PRECISION float c0loz = (node2.x - P.z) * idir.z; NO_EXTENDED_PRECISION float c0hiz = (node2.z - P.z) * idir.z; NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f); NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t); NO_EXTENDED_PRECISION float c1lox = (node0.y - P.x) * idir.x; NO_EXTENDED_PRECISION float c1hix = (node0.w - P.x) * idir.x; NO_EXTENDED_PRECISION float c1loy = (node1.y - P.y) * idir.y; NO_EXTENDED_PRECISION float c1hiy = (node1.w - P.y) * idir.y; NO_EXTENDED_PRECISION float c1loz = (node2.y - P.z) * idir.z; NO_EXTENDED_PRECISION float c1hiz = (node2.w - P.z) * idir.z; NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f); NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t); /* decide which nodes to traverse next */ #ifdef __VISIBILITY_FLAG__ /* this visibility test gives a 5% performance hit, how to solve? */ traverseChild0 = (c0max >= c0min) && (__float_as_uint(cnodes.z) & visibility); traverseChild1 = (c1max >= c1min) && (__float_as_uint(cnodes.w) & visibility); #else traverseChild0 = (c0max >= c0min); traverseChild1 = (c1max >= c1min); #endif #else // __KERNEL_SSE2__ /* Intersect two child bounding boxes, SSE3 version adapted from Embree */ /* fetch node data */ const ssef *bvh_nodes = (ssef*)kg->__bvh_nodes.data + nodeAddr*BVH_NODE_SIZE; const float4 cnodes = ((float4*)bvh_nodes)[3]; /* intersect ray against child nodes */ const ssef tminmaxx = (shuffle_swap(bvh_nodes[0], shufflexyz[0]) - Psplat[0]) * idirsplat[0]; const ssef tminmaxy = (shuffle_swap(bvh_nodes[1], shufflexyz[1]) - Psplat[1]) * idirsplat[1]; const ssef tminmaxz = (shuffle_swap(bvh_nodes[2], shufflexyz[2]) - Psplat[2]) * idirsplat[2]; /* calculate { c0min, c1min, -c0max, -c1max} */ ssef minmax = max(max(tminmaxx, tminmaxy), max(tminmaxz, tsplat)); const ssef tminmax = minmax ^ pn; const sseb lrhit = tminmax <= shuffle<2, 3, 0, 1>(tminmax); /* decide which nodes to traverse next */ #ifdef __VISIBILITY_FLAG__ /* this visibility test gives a 5% performance hit, how to solve? */ traverseChild0 = (movemask(lrhit) & 1) && (__float_as_uint(cnodes.z) & visibility); traverseChild1 = (movemask(lrhit) & 2) && (__float_as_uint(cnodes.w) & visibility); #else traverseChild0 = (movemask(lrhit) & 1); traverseChild1 = (movemask(lrhit) & 2); #endif #endif // __KERNEL_SSE2__ nodeAddr = __float_as_int(cnodes.x); nodeAddrChild1 = __float_as_int(cnodes.y); if(traverseChild0 && traverseChild1) { /* both children were intersected, push the farther one */ #if !defined(__KERNEL_SSE2__) bool closestChild1 = (c1min < c0min); #else bool closestChild1 = tminmax[1] < tminmax[0]; #endif if(closestChild1) { int tmp = nodeAddr; nodeAddr = nodeAddrChild1; nodeAddrChild1 = tmp; } ++stackPtr; traversalStack[stackPtr] = nodeAddrChild1; } else { /* one child was intersected */ if(traverseChild1) { nodeAddr = nodeAddrChild1; } else if(!traverseChild0) { /* neither child was intersected */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } } } /* if node is leaf, fetch triangle list */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1)); int primAddr = __float_as_int(leaf.x); #if FEATURE(BVH_INSTANCING) if(primAddr >= 0) { #endif int primAddr2 = __float_as_int(leaf.y); /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; /* primitive intersection */ for(; primAddr < primAddr2; primAddr++) { /* only primitives from volume object */ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; int object_flag = kernel_tex_fetch(__object_flag, tri_object); if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { continue; } /* intersect ray against primitive */ uint type = kernel_tex_fetch(__prim_type, primAddr); switch(type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { triangle_intersect(kg, isect, P, dir, visibility, object, primAddr); break; } #if FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { motion_triangle_intersect(kg, isect, P, dir, ray->time, visibility, object, primAddr); break; } #endif #if FEATURE(BVH_HAIR) case PRIMITIVE_CURVE: case PRIMITIVE_MOTION_CURVE: { if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) bvh_cardinal_curve_intersect(kg, isect, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0); else bvh_curve_intersect(kg, isect, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0); break; } #endif default: { break; } } } } #if FEATURE(BVH_INSTANCING) else { /* instance push */ object = kernel_tex_fetch(__prim_object, -primAddr-1); int object_flag = kernel_tex_fetch(__object_flag, object); if(object_flag & SD_OBJECT_HAS_VOLUME) { #if FEATURE(BVH_MOTION) bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_tfm); #else bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t); #endif #if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif ++stackPtr; traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } else { /* pop */ object = OBJECT_NONE; nodeAddr = traversalStack[stackPtr]; --stackPtr; } } } #endif } while(nodeAddr != ENTRYPOINT_SENTINEL); #if FEATURE(BVH_INSTANCING) if(stackPtr >= 0) { kernel_assert(object != OBJECT_NONE); /* instance pop */ #if FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_tfm); #else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t); #endif #if defined(__KERNEL_SSE2__) Psplat[0] = ssef(P.x); Psplat[1] = ssef(P.y); Psplat[2] = ssef(P.z); tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t); gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); #endif object = OBJECT_NONE; nodeAddr = traversalStack[stackPtr]; --stackPtr; } #endif } while(nodeAddr != ENTRYPOINT_SENTINEL); return (isect->prim != PRIM_NONE); } #undef FEATURE #undef BVH_FUNCTION_NAME #undef BVH_FUNCTION_FEATURES