/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN /* Curve Primitive * * Curve primitive for rendering hair and fur. These can be render as flat ribbons * or curves with actual thickness. The curve can also be rendered as line segments * rather than curves for better performance */ #ifdef __HAIR__ /* Reading attributes on various curve elements */ ccl_device float curve_attribute_float(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float *dx, float *dy) { if(elem == ATTR_ELEMENT_CURVE) { #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = 0.0f; if(dy) *dy = 0.0f; #endif return kernel_tex_fetch(__attributes_float, offset + sd->prim); } else if(elem == ATTR_ELEMENT_CURVE_KEY || elem == ATTR_ELEMENT_CURVE_KEY_MOTION) { float4 curvedata = kernel_tex_fetch(__curves, sd->prim); int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type); int k1 = k0 + 1; float f0 = kernel_tex_fetch(__attributes_float, offset + k0); float f1 = kernel_tex_fetch(__attributes_float, offset + k1); #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*(f1 - f0); if(dy) *dy = 0.0f; #endif return (1.0f - sd->u)*f0 + sd->u*f1; } else { #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = 0.0f; if(dy) *dy = 0.0f; #endif return 0.0f; } } ccl_device float3 curve_attribute_float3(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float3 *dx, float3 *dy) { if(elem == ATTR_ELEMENT_CURVE) { /* idea: we can't derive any useful differentials here, but for tiled * mipmap image caching it would be useful to avoid reading the highest * detail level always. maybe a derivative based on the hair density * could be computed somehow? */ #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); #endif return float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + sd->prim)); } else if(elem == ATTR_ELEMENT_CURVE_KEY || elem == ATTR_ELEMENT_CURVE_KEY_MOTION) { float4 curvedata = kernel_tex_fetch(__curves, sd->prim); int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type); int k1 = k0 + 1; float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + k0)); float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + k1)); #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*(f1 - f0); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); #endif return (1.0f - sd->u)*f0 + sd->u*f1; } else { #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); #endif return make_float3(0.0f, 0.0f, 0.0f); } } /* Curve thickness */ ccl_device float curve_thickness(KernelGlobals *kg, ShaderData *sd) { float r = 0.0f; if(sd->type & PRIMITIVE_ALL_CURVE) { float4 curvedata = kernel_tex_fetch(__curves, sd->prim); int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type); int k1 = k0 + 1; float4 P_curve[2]; if(sd->type & PRIMITIVE_CURVE) { P_curve[0]= kernel_tex_fetch(__curve_keys, k0); P_curve[1]= kernel_tex_fetch(__curve_keys, k1); } else { motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve); } r = (P_curve[1].w - P_curve[0].w) * sd->u + P_curve[0].w; } return r*2.0f; } /* Curve location for motion pass, linear interpolation between keys and * ignoring radius because we do the same for the motion keys */ ccl_device float3 curve_motion_center_location(KernelGlobals *kg, ShaderData *sd) { float4 curvedata = kernel_tex_fetch(__curves, sd->prim); int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type); int k1 = k0 + 1; float4 P_curve[2]; P_curve[0]= kernel_tex_fetch(__curve_keys, k0); P_curve[1]= kernel_tex_fetch(__curve_keys, k1); return float4_to_float3(P_curve[1]) * sd->u + float4_to_float3(P_curve[0]) * (1.0f - sd->u); } /* Curve tangent normal */ ccl_device float3 curve_tangent_normal(KernelGlobals *kg, ShaderData *sd) { float3 tgN = make_float3(0.0f,0.0f,0.0f); if(sd->type & PRIMITIVE_ALL_CURVE) { tgN = -(-sd->I - sd->dPdu * (dot(sd->dPdu,-sd->I) / len_squared(sd->dPdu))); tgN = normalize(tgN); /* need to find suitable scaled gd for corrected normal */ #if 0 tgN = normalize(tgN - gd * sd->dPdu); #endif } return tgN; } /* Curve bounds utility function */ ccl_device_inline void curvebounds(float *lower, float *upper, float *extremta, float *extrema, float *extremtb, float *extremb, float p0, float p1, float p2, float p3) { float halfdiscroot = (p2 * p2 - 3 * p3 * p1); float ta = -1.0f; float tb = -1.0f; *extremta = -1.0f; *extremtb = -1.0f; *upper = p0; *lower = (p0 + p1) + (p2 + p3); *extrema = *upper; *extremb = *lower; if(*lower >= *upper) { *upper = *lower; *lower = p0; } if(halfdiscroot >= 0) { float inv3p3 = (1.0f/3.0f)/p3; halfdiscroot = sqrtf(halfdiscroot); ta = (-p2 - halfdiscroot) * inv3p3; tb = (-p2 + halfdiscroot) * inv3p3; } float t2; float t3; if(ta > 0.0f && ta < 1.0f) { t2 = ta * ta; t3 = t2 * ta; *extremta = ta; *extrema = p3 * t3 + p2 * t2 + p1 * ta + p0; *upper = fmaxf(*extrema, *upper); *lower = fminf(*extrema, *lower); } if(tb > 0.0f && tb < 1.0f) { t2 = tb * tb; t3 = t2 * tb; *extremtb = tb; *extremb = p3 * t3 + p2 * t2 + p1 * tb + p0; *upper = fmaxf(*extremb, *upper); *lower = fminf(*extremb, *lower); } } #ifdef __KERNEL_SSE2__ ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a) { return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2])); } #endif #ifdef __KERNEL_SSE2__ /* Pass P and dir by reference to aligned vector */ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect, const float3 &P, const float3 &dir, uint visibility, int object, int curveAddr, float time, int type, uint *lcg_state, float difl, float extmax) #else ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect, float3 P, float3 dir, uint visibility, int object, int curveAddr, float time,int type, uint *lcg_state, float difl, float extmax) #endif { int segment = PRIMITIVE_UNPACK_SEGMENT(type); float epsilon = 0.0f; float r_st, r_en; int depth = kernel_data.curve.subdivisions; int flags = kernel_data.curve.curveflags; int prim = kernel_tex_fetch(__prim_index, curveAddr); #ifdef __KERNEL_SSE2__ ssef vdir = load4f(dir); ssef vcurve_coef[4]; const float3 *curve_coef = (float3 *)vcurve_coef; { ssef dtmp = vdir * vdir; ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp)); ssef rd_ss = load1f_first(1.0f) / d_ss; ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]); int2 &v00 = (int2 &)v00vec; int k0 = v00.x + segment; int k1 = k0 + 1; int ka = max(k0 - 1, v00.x); int kb = min(k1 + 1, v00.x + v00.y - 1); ssef P_curve[4]; if(type & PRIMITIVE_CURVE) { P_curve[0] = load4f(&kg->__curve_keys.data[ka].x); P_curve[1] = load4f(&kg->__curve_keys.data[k0].x); P_curve[2] = load4f(&kg->__curve_keys.data[k1].x); P_curve[3] = load4f(&kg->__curve_keys.data[kb].x); } else { int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object; motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4*)&P_curve); } ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss)); ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn; ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy; ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz); ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0)); ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0); ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0); ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0); ssef htfm[] = { htfm0, htfm1, htfm2 }; ssef vP = load4f(P); ssef p0 = transform_point_T3(htfm, P_curve[0] - vP); ssef p1 = transform_point_T3(htfm, P_curve[1] - vP); ssef p2 = transform_point_T3(htfm, P_curve[2] - vP); ssef p3 = transform_point_T3(htfm, P_curve[3] - vP); float fc = 0.71f; ssef vfc = ssef(fc); ssef vfcxp3 = vfc * p3; vcurve_coef[0] = p1; vcurve_coef[1] = vfc * (p2 - p0); vcurve_coef[2] = madd(ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3))); vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3)); r_st = ((float4 &)P_curve[1]).w; r_en = ((float4 &)P_curve[2]).w; } #else float3 curve_coef[4]; /* curve Intersection check */ /* obtain curve parameters */ { /* ray transform created - this should be created at beginning of intersection loop */ Transform htfm; float d = sqrtf(dir.x * dir.x + dir.z * dir.z); htfm = make_transform( dir.z / d, 0, -dir.x /d, 0, -dir.x * dir.y /d, d, -dir.y * dir.z /d, 0, dir.x, dir.y, dir.z, 0, 0, 0, 0, 1); float4 v00 = kernel_tex_fetch(__curves, prim); int k0 = __float_as_int(v00.x) + segment; int k1 = k0 + 1; int ka = max(k0 - 1,__float_as_int(v00.x)); int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1); float4 P_curve[4]; if(type & PRIMITIVE_CURVE) { P_curve[0] = kernel_tex_fetch(__curve_keys, ka); P_curve[1] = kernel_tex_fetch(__curve_keys, k0); P_curve[2] = kernel_tex_fetch(__curve_keys, k1); P_curve[3] = kernel_tex_fetch(__curve_keys, kb); } else { int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object; motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, P_curve); } float3 p0 = transform_point(&htfm, float4_to_float3(P_curve[0]) - P); float3 p1 = transform_point(&htfm, float4_to_float3(P_curve[1]) - P); float3 p2 = transform_point(&htfm, float4_to_float3(P_curve[2]) - P); float3 p3 = transform_point(&htfm, float4_to_float3(P_curve[3]) - P); float fc = 0.71f; curve_coef[0] = p1; curve_coef[1] = -fc*p0 + fc*p2; curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3; curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3; r_st = P_curve[1].w; r_en = P_curve[2].w; } #endif float r_curr = max(r_st, r_en); if((flags & CURVE_KN_RIBBONS) || !(flags & CURVE_KN_BACKFACING)) epsilon = 2 * r_curr; /* find bounds - this is slow for cubic curves */ float upper, lower; float zextrem[4]; curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z); if(lower - r_curr > isect->t || upper + r_curr < epsilon) return false; /* minimum width extension */ float mw_extension = min(difl * fabsf(upper), extmax); float r_ext = mw_extension + r_curr; float xextrem[4]; curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x); if(lower > r_ext || upper < -r_ext) return false; float yextrem[4]; curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y); if(lower > r_ext || upper < -r_ext) return false; /* setup recurrent loop */ int level = 1 << depth; int tree = 0; float resol = 1.0f / (float)level; bool hit = false; /* begin loop */ while(!(tree >> (depth))) { float i_st = tree * resol; float i_en = i_st + (level * resol); #ifdef __KERNEL_SSE2__ ssef vi_st = ssef(i_st), vi_en = ssef(i_en); ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]), vi_st, vcurve_coef[0]); ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]), vi_en, vcurve_coef[0]); ssef vbmin = min(vp_st, vp_en); ssef vbmax = max(vp_st, vp_en); float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax; float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z; float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z; float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en; #else float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0]; float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0]; float bminx = min(p_st.x, p_en.x); float bmaxx = max(p_st.x, p_en.x); float bminy = min(p_st.y, p_en.y); float bmaxy = max(p_st.y, p_en.y); float bminz = min(p_st.z, p_en.z); float bmaxz = max(p_st.z, p_en.z); #endif if(xextrem[0] >= i_st && xextrem[0] <= i_en) { bminx = min(bminx,xextrem[1]); bmaxx = max(bmaxx,xextrem[1]); } if(xextrem[2] >= i_st && xextrem[2] <= i_en) { bminx = min(bminx,xextrem[3]); bmaxx = max(bmaxx,xextrem[3]); } if(yextrem[0] >= i_st && yextrem[0] <= i_en) { bminy = min(bminy,yextrem[1]); bmaxy = max(bmaxy,yextrem[1]); } if(yextrem[2] >= i_st && yextrem[2] <= i_en) { bminy = min(bminy,yextrem[3]); bmaxy = max(bmaxy,yextrem[3]); } if(zextrem[0] >= i_st && zextrem[0] <= i_en) { bminz = min(bminz,zextrem[1]); bmaxz = max(bmaxz,zextrem[1]); } if(zextrem[2] >= i_st && zextrem[2] <= i_en) { bminz = min(bminz,zextrem[3]); bmaxz = max(bmaxz,zextrem[3]); } float r1 = r_st + (r_en - r_st) * i_st; float r2 = r_st + (r_en - r_st) * i_en; r_curr = max(r1, r2); mw_extension = min(difl * fabsf(bmaxz), extmax); float r_ext = mw_extension + r_curr; float coverage = 1.0f; if (bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) { /* the bounding box does not overlap the square centered at O */ tree += level; level = tree & -tree; } else if (level == 1) { /* the maximum recursion depth is reached. * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0. * dP* is reversed if necessary.*/ float t = isect->t; float u = 0.0f; float gd = 0.0f; if(flags & CURVE_KN_RIBBONS) { float3 tg = (p_en - p_st); float w = tg.x * tg.x + tg.y * tg.y; if (w == 0) { tree++; level = tree & -tree; continue; } w = -(p_st.x * tg.x + p_st.y * tg.y) / w; w = clamp((float)w, 0.0f, 1.0f); /* compute u on the curve segment */ u = i_st * (1 - w) + i_en * w; r_curr = r_st + (r_en - r_st) * u; /* compare x-y distances */ float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0]; float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1]; if (dot(tg, dp_st)< 0) dp_st *= -1; if (dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) { tree++; level = tree & -tree; continue; } float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1]; if (dot(tg, dp_en) < 0) dp_en *= -1; if (dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) { tree++; level = tree & -tree; continue; } /* compute coverage */ float r_ext = r_curr; coverage = 1.0f; if(difl != 0.0f) { mw_extension = min(difl * fabsf(bmaxz), extmax); r_ext = mw_extension + r_curr; float d = sqrtf(p_curr.x * p_curr.x + p_curr.y * p_curr.y); float d0 = d - r_curr; float d1 = d + r_curr; float inv_mw_extension = 1.0f/mw_extension; if (d0 >= 0) coverage = (min(d1 * inv_mw_extension, 1.0f) - min(d0 * inv_mw_extension, 1.0f)) * 0.5f; else // inside coverage = (min(d1 * inv_mw_extension, 1.0f) + min(-d0 * inv_mw_extension, 1.0f)) * 0.5f; } if (p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) { tree++; level = tree & -tree; continue; } t = p_curr.z; /* stochastic fade from minimum width */ if(difl != 0.0f && lcg_state) { if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage)) return hit; } } else { float l = len(p_en - p_st); /* minimum width extension */ float or1 = r1; float or2 = r2; if(difl != 0.0f) { mw_extension = min(len(p_st - P) * difl, extmax); or1 = r1 < mw_extension ? mw_extension : r1; mw_extension = min(len(p_en - P) * difl, extmax); or2 = r2 < mw_extension ? mw_extension : r2; } /* --- */ float invl = 1.0f/l; float3 tg = (p_en - p_st) * invl; gd = (or2 - or1) * invl; float difz = -dot(p_st,tg); float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd)); float invcyla = 1.0f/cyla; float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + or1))); float tcentre = -halfb*invcyla; float zcentre = difz + (tg.z * tcentre); float3 tdif = - p_st; tdif.z += tcentre; float tdifz = dot(tdif,tg); float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + or1))); float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - or1*or1 - 2*or1*tdifz*gd; float td = tb*tb - 4*cyla*tc; if (td < 0.0f) { tree++; level = tree & -tree; continue; } float rootd = sqrtf(td); float correction = (-tb - rootd) * 0.5f * invcyla; t = tcentre + correction; float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1]; if (dot(tg, dp_st)< 0) dp_st *= -1; float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1]; if (dot(tg, dp_en) < 0) dp_en *= -1; if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) { correction = (-tb + rootd) * 0.5f * invcyla; t = tcentre + correction; } if (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) { tree++; level = tree & -tree; continue; } float w = (zcentre + (tg.z * correction)) * invl; w = clamp((float)w, 0.0f, 1.0f); /* compute u on the curve segment */ u = i_st * (1 - w) + i_en * w; /* stochastic fade from minimum width */ if(difl != 0.0f && lcg_state) { r_curr = r1 + (r2 - r1) * w; r_ext = or1 + (or2 - or1) * w; coverage = r_curr/r_ext; if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage)) return hit; } } /* we found a new intersection */ #ifdef __VISIBILITY_FLAG__ /* visibility flag test. we do it here under the assumption * that most triangles are culled by node flags */ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility) #endif { /* record intersection */ isect->t = t; isect->u = u; isect->v = gd; isect->prim = curveAddr; isect->object = object; isect->type = type; hit = true; } tree++; level = tree & -tree; } else { /* split the curve into two curves and process */ level = level >> 1; } } return hit; } ccl_device_inline bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isect, float3 P, float3 direction, uint visibility, int object, int curveAddr, float time, int type, uint *lcg_state, float difl, float extmax) { /* define few macros to minimize code duplication for SSE */ #ifndef __KERNEL_SSE2__ #define len3_squared(x) len_squared(x) #define len3(x) len(x) #define dot3(x, y) dot(x, y) #endif int segment = PRIMITIVE_UNPACK_SEGMENT(type); /* curve Intersection check */ int flags = kernel_data.curve.curveflags; int prim = kernel_tex_fetch(__prim_index, curveAddr); float4 v00 = kernel_tex_fetch(__curves, prim); int cnum = __float_as_int(v00.x); int k0 = cnum + segment; int k1 = k0 + 1; #ifndef __KERNEL_SSE2__ float4 P_curve[2]; if(type & PRIMITIVE_CURVE) { P_curve[0]= kernel_tex_fetch(__curve_keys, k0); P_curve[1]= kernel_tex_fetch(__curve_keys, k1); } else { int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object; motion_curve_keys(kg, fobject, prim, time, k0, k1, P_curve); } float or1 = P_curve[0].w; float or2 = P_curve[1].w; float3 p1 = float4_to_float3(P_curve[0]); float3 p2 = float4_to_float3(P_curve[1]); /* minimum width extension */ float r1 = or1; float r2 = or2; float3 dif = P - p1; float3 dif_second = P - p2; if(difl != 0.0f) { float pixelsize = min(len3(dif) * difl, extmax); r1 = or1 < pixelsize ? pixelsize : or1; pixelsize = min(len3(dif_second) * difl, extmax); r2 = or2 < pixelsize ? pixelsize : or2; } /* --- */ float3 p21_diff = p2 - p1; float3 sphere_dif1 = (dif + dif_second) * 0.5f; float3 dir = direction; float sphere_b_tmp = dot3(dir, sphere_dif1); float3 sphere_dif2 = sphere_dif1 - sphere_b_tmp * dir; #else ssef P_curve[2]; if(type & PRIMITIVE_CURVE) { P_curve[0] = load4f(&kg->__curve_keys.data[k0].x); P_curve[1] = load4f(&kg->__curve_keys.data[k1].x); } else { int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object; motion_curve_keys(kg, fobject, prim, time, k0, k1, (float4*)&P_curve); } const ssef or12 = shuffle<3, 3, 3, 3>(P_curve[0], P_curve[1]); ssef r12 = or12; const ssef vP = load4f(P); const ssef dif = vP - P_curve[0]; const ssef dif_second = vP - P_curve[1]; if(difl != 0.0f) { const ssef len1_sq = len3_squared_splat(dif); const ssef len2_sq = len3_squared_splat(dif_second); const ssef len12 = mm_sqrt(shuffle<0, 0, 0, 0>(len1_sq, len2_sq)); const ssef pixelsize12 = min(len12 * difl, ssef(extmax)); r12 = max(or12, pixelsize12); } float or1 = extract<0>(or12), or2 = extract<0>(shuffle<2>(or12)); float r1 = extract<0>(r12), r2 = extract<0>(shuffle<2>(r12)); const ssef p21_diff = P_curve[1] - P_curve[0]; const ssef sphere_dif1 = (dif + dif_second) * 0.5f; const ssef dir = load4f(direction); const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1); const ssef sphere_dif2 = nmsub(sphere_b_tmp, dir, sphere_dif1); #endif float mr = max(r1, r2); float l = len3(p21_diff); float invl = 1.0f / l; float sp_r = mr + 0.5f * l; float sphere_b = dot3(dir, sphere_dif2); float sdisc = sphere_b * sphere_b - len3_squared(sphere_dif2) + sp_r * sp_r; if(sdisc < 0.0f) return false; /* obtain parameters and test midpoint distance for suitable modes */ #ifndef __KERNEL_SSE2__ float3 tg = p21_diff * invl; #else const ssef tg = p21_diff * invl; #endif float gd = (r2 - r1) * invl; float dirz = dot3(dir, tg); float difz = dot3(dif, tg); float a = 1.0f - (dirz*dirz*(1 + gd*gd)); float halfb = dot3(dir, dif) - dirz*(difz + gd*(difz*gd + r1)); float tcentre = -halfb/a; float zcentre = difz + (dirz * tcentre); if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE)) return false; if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION)) return false; /* test minimum separation */ #ifndef __KERNEL_SSE2__ float3 cprod = cross(tg, dir); float cprod2sq = len3_squared(cross(tg, dif)); #else const ssef cprod = cross(tg, dir); float cprod2sq = len3_squared(cross_zxy(tg, dif)); #endif float cprodsq = len3_squared(cprod); float distscaled = dot3(cprod, dif); if(cprodsq == 0) distscaled = cprod2sq; else distscaled = (distscaled*distscaled)/cprodsq; if(distscaled > mr*mr) return false; /* calculate true intersection */ #ifndef __KERNEL_SSE2__ float3 tdif = dif + tcentre * dir; #else const ssef tdif = madd(ssef(tcentre), dir, dif); #endif float tdifz = dot3(tdif, tg); float tdifma = tdifz*gd + r1; float tb = 2*(dot3(dir, tdif) - dirz*(tdifz + gd*tdifma)); float tc = dot3(tdif, tdif) - tdifz*tdifz - tdifma*tdifma; float td = tb*tb - 4*a*tc; if (td < 0.0f) return false; float rootd = 0.0f; float correction = 0.0f; if(flags & CURVE_KN_ACCURATE) { rootd = sqrtf(td); correction = ((-tb - rootd)/(2*a)); } float t = tcentre + correction; if(t < isect->t) { if(flags & CURVE_KN_INTERSECTCORRECTION) { rootd = sqrtf(td); correction = ((-tb - rootd)/(2*a)); t = tcentre + correction; } float z = zcentre + (dirz * correction); // bool backface = false; if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) { // backface = true; correction = ((-tb + rootd)/(2*a)); t = tcentre + correction; z = zcentre + (dirz * correction); } /* stochastic fade from minimum width */ float adjradius = or1 + z * (or2 - or1) * invl; adjradius = adjradius / (r1 + z * gd); if(lcg_state && adjradius != 1.0f) { if(lcg_step_float(lcg_state) > adjradius) return false; } /* --- */ if(t > 0.0f && t < isect->t && z >= 0 && z <= l) { if (flags & CURVE_KN_ENCLOSEFILTER) { float enc_ratio = 1.01f; if((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) { float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio)); float c2 = dot3(dif, dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio; if(a2*c2 < 0.0f) return false; } } #ifdef __VISIBILITY_FLAG__ /* visibility flag test. we do it here under the assumption * that most triangles are culled by node flags */ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility) #endif { /* record intersection */ isect->t = t; isect->u = z*invl; isect->v = gd; isect->prim = curveAddr; isect->object = object; isect->type = type; return true; } } } return false; #ifndef __KERNEL_SSE2__ #undef len3_squared #undef len3 #undef dot3 #endif } ccl_device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3) { float fc = 0.71f; float data[4]; float t2 = t * t; data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc; data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t; data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc; data[3] = 3.0f * fc * t2 - 2.0f * fc * t; return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3; } ccl_device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3) { float data[4]; float fc = 0.71f; float t2 = t * t; float t3 = t2 * t; data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t; data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f; data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t; data[3] = fc * t3 - fc * t2; return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3; } ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray) { int flag = kernel_data.curve.curveflags; float t = isect->t; float3 P = ray->P; float3 D = ray->D; if(isect->object != OBJECT_NONE) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_itfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM); #endif P = transform_point(&tfm, P); D = transform_direction(&tfm, D*t); D = normalize_len(D, &t); } int prim = kernel_tex_fetch(__prim_index, isect->prim); float4 v00 = kernel_tex_fetch(__curves, prim); int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type); int k1 = k0 + 1; float3 tg; if(flag & CURVE_KN_INTERPOLATE) { int ka = max(k0 - 1,__float_as_int(v00.x)); int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1); float4 P_curve[4]; if(sd->type & PRIMITIVE_CURVE) { P_curve[0] = kernel_tex_fetch(__curve_keys, ka); P_curve[1] = kernel_tex_fetch(__curve_keys, k0); P_curve[2] = kernel_tex_fetch(__curve_keys, k1); P_curve[3] = kernel_tex_fetch(__curve_keys, kb); } else { motion_cardinal_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve); } float3 p[4]; p[0] = float4_to_float3(P_curve[0]); p[1] = float4_to_float3(P_curve[1]); p[2] = float4_to_float3(P_curve[2]); p[3] = float4_to_float3(P_curve[3]); P = P + D*t; #ifdef __UV__ sd->u = isect->u; sd->v = 0.0f; #endif tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3])); if(kernel_data.curve.curveflags & CURVE_KN_RIBBONS) { sd->Ng = normalize(-(D - tg * (dot(tg, D)))); } else { /* direction from inside to surface of curve */ float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]); sd->Ng = normalize(P - p_curr); /* adjustment for changing radius */ float gd = isect->v; if(gd != 0.0f) { sd->Ng = sd->Ng - gd * tg; sd->Ng = normalize(sd->Ng); } } /* todo: sometimes the normal is still so that this is detected as * backfacing even if cull backfaces is enabled */ sd->N = sd->Ng; } else { float4 P_curve[2]; if(sd->type & PRIMITIVE_CURVE) { P_curve[0]= kernel_tex_fetch(__curve_keys, k0); P_curve[1]= kernel_tex_fetch(__curve_keys, k1); } else { motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve); } float l = 1.0f; tg = normalize_len(float4_to_float3(P_curve[1] - P_curve[0]), &l); P = P + D*t; float3 dif = P - float4_to_float3(P_curve[0]); #ifdef __UV__ sd->u = dot(dif,tg)/l; sd->v = 0.0f; #endif if (flag & CURVE_KN_TRUETANGENTGNORMAL) { sd->Ng = -(D - tg * dot(tg, D)); sd->Ng = normalize(sd->Ng); } else { float gd = isect->v; /* direction from inside to surface of curve */ sd->Ng = (dif - tg * sd->u * l) / (P_curve[0].w + sd->u * l * gd); /* adjustment for changing radius */ if (gd != 0.0f) { sd->Ng = sd->Ng - gd * tg; sd->Ng = normalize(sd->Ng); } } sd->N = sd->Ng; } #ifdef __DPDU__ /* dPdu/dPdv */ sd->dPdu = tg; sd->dPdv = cross(tg, sd->Ng); #endif if(isect->object != OBJECT_NONE) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_tfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM); #endif P = transform_point(&tfm, P); } return P; } #endif CCL_NAMESPACE_END