/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN /* Motion Curve Primitive * * These are stored as regular curves, plus extra positions and radii at times * other than the frame center. Computing the curve keys at a given ray time is * a matter of interpolation of the two steps between which the ray time lies. * * The extra curve keys are stored as ATTR_STD_MOTION_VERTEX_POSITION. */ #ifdef __HAIR__ ccl_device_inline int find_attribute_curve_motion(KernelGlobals *kg, int object, uint id, AttributeElement *elem) { /* todo: find a better (faster) solution for this, maybe store offset per object. * * NOTE: currently it's not a bottleneck because in test scenes the loop below runs * zero iterations and rendering is really slow with motion curves. For until other * areas are speed up it's probably not so crucial to optimize this out. */ uint attr_offset = object*kernel_data.bvh.attributes_map_stride + ATTR_PRIM_CURVE; uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset); while(attr_map.x != id) { attr_offset += ATTR_PRIM_TYPES; attr_map = kernel_tex_fetch(__attributes_map, attr_offset); } *elem = (AttributeElement)attr_map.y; /* return result */ return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z; } ccl_device_inline void motion_curve_keys_for_step(KernelGlobals *kg, int offset, int numkeys, int numsteps, int step, int k0, int k1, float4 keys[2]) { if(step == numsteps) { /* center step: regular key location */ keys[0] = kernel_tex_fetch(__curve_keys, k0); keys[1] = kernel_tex_fetch(__curve_keys, k1); } else { /* center step is not stored in this array */ if(step > numsteps) step--; offset += step*numkeys; keys[0] = kernel_tex_fetch(__attributes_float3, offset + k0); keys[1] = kernel_tex_fetch(__attributes_float3, offset + k1); } } /* return 2 curve key locations */ ccl_device_inline void motion_curve_keys(KernelGlobals *kg, int object, int prim, float time, int k0, int k1, float4 keys[2]) { /* get motion info */ int numsteps, numkeys; object_motion_info(kg, object, &numsteps, NULL, &numkeys); /* figure out which steps we need to fetch and their interpolation factor */ int maxstep = numsteps*2; int step = min((int)(time*maxstep), maxstep-1); float t = time*maxstep - step; /* find attribute */ AttributeElement elem; int offset = find_attribute_curve_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem); kernel_assert(offset != ATTR_STD_NOT_FOUND); /* fetch key coordinates */ float4 next_keys[2]; motion_curve_keys_for_step(kg, offset, numkeys, numsteps, step, k0, k1, keys); motion_curve_keys_for_step(kg, offset, numkeys, numsteps, step+1, k0, k1, next_keys); /* interpolate between steps */ keys[0] = (1.0f - t)*keys[0] + t*next_keys[0]; keys[1] = (1.0f - t)*keys[1] + t*next_keys[1]; } ccl_device_inline void motion_cardinal_curve_keys_for_step(KernelGlobals *kg, int offset, int numkeys, int numsteps, int step, int k0, int k1, int k2, int k3, float4 keys[4]) { if(step == numsteps) { /* center step: regular key location */ keys[0] = kernel_tex_fetch(__curve_keys, k0); keys[1] = kernel_tex_fetch(__curve_keys, k1); keys[2] = kernel_tex_fetch(__curve_keys, k2); keys[3] = kernel_tex_fetch(__curve_keys, k3); } else { /* center step is not stored in this array */ if(step > numsteps) step--; offset += step*numkeys; keys[0] = kernel_tex_fetch(__attributes_float3, offset + k0); keys[1] = kernel_tex_fetch(__attributes_float3, offset + k1); keys[2] = kernel_tex_fetch(__attributes_float3, offset + k2); keys[3] = kernel_tex_fetch(__attributes_float3, offset + k3); } } /* return 2 curve key locations */ ccl_device_inline void motion_cardinal_curve_keys(KernelGlobals *kg, int object, int prim, float time, int k0, int k1, int k2, int k3, float4 keys[4]) { /* get motion info */ int numsteps, numkeys; object_motion_info(kg, object, &numsteps, NULL, &numkeys); /* figure out which steps we need to fetch and their interpolation factor */ int maxstep = numsteps*2; int step = min((int)(time*maxstep), maxstep-1); float t = time*maxstep - step; /* find attribute */ AttributeElement elem; int offset = find_attribute_curve_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem); kernel_assert(offset != ATTR_STD_NOT_FOUND); /* fetch key coordinates */ float4 next_keys[4]; motion_cardinal_curve_keys_for_step(kg, offset, numkeys, numsteps, step, k0, k1, k2, k3, keys); motion_cardinal_curve_keys_for_step(kg, offset, numkeys, numsteps, step+1, k0, k1, k2, k3, next_keys); /* interpolate between steps */ keys[0] = (1.0f - t)*keys[0] + t*next_keys[0]; keys[1] = (1.0f - t)*keys[1] + t*next_keys[1]; keys[2] = (1.0f - t)*keys[2] + t*next_keys[2]; keys[3] = (1.0f - t)*keys[3] + t*next_keys[3]; } #if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) /* Similar to above, but returns keys as pair of two AVX registers with each * holding two float4. */ ccl_device_inline void motion_cardinal_curve_keys_avx(KernelGlobals *kg, int object, int prim, float time, int k0, int k1, int k2, int k3, avxf *out_keys_0_1, avxf *out_keys_2_3) { /* Get motion info. */ int numsteps, numkeys; object_motion_info(kg, object, &numsteps, NULL, &numkeys); /* Figure out which steps we need to fetch and their interpolation factor. */ int maxstep = numsteps * 2; int step = min((int)(time*maxstep), maxstep - 1); float t = time*maxstep - step; /* Find attribute. */ AttributeElement elem; int offset = find_attribute_curve_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem); kernel_assert(offset != ATTR_STD_NOT_FOUND); /* Fetch key coordinates. */ float4 next_keys[4]; float4 keys[4]; motion_cardinal_curve_keys_for_step(kg, offset, numkeys, numsteps, step, k0, k1, k2, k3, keys); motion_cardinal_curve_keys_for_step(kg, offset, numkeys, numsteps, step + 1, k0, k1, k2, k3, next_keys); const avxf keys_0_1 = avxf(keys[0].m128, keys[1].m128); const avxf keys_2_3 = avxf(keys[2].m128, keys[3].m128); const avxf next_keys_0_1 = avxf(next_keys[0].m128, next_keys[1].m128); const avxf next_keys_2_3 = avxf(next_keys[2].m128, next_keys[3].m128); /* Interpolate between steps. */ *out_keys_0_1 = (1.0f - t) * keys_0_1 + t*next_keys_0_1; *out_keys_2_3 = (1.0f - t) * keys_2_3 + t*next_keys_2_3; } #endif #endif CCL_NAMESPACE_END