/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Motion Triangle Primitive * * These are stored as regular triangles, plus extra positions and normals at * times other than the frame center. Computing the triangle vertex positions * or normals at a given ray time is a matter of interpolation of the two steps * between which the ray time lies. * * The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION * and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes. */ CCL_NAMESPACE_BEGIN /* Time interpolation of vertex positions and normals */ ccl_device_inline int find_attribute_motion(KernelGlobals *kg, int object, uint id, AttributeElement *elem) { /* todo: find a better (faster) solution for this, maybe store offset per object */ uint attr_offset = object_attribute_map_offset(kg, object); uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset); while(attr_map.x != id) { attr_offset += ATTR_PRIM_TYPES; attr_map = kernel_tex_fetch(__attributes_map, attr_offset); } *elem = (AttributeElement)attr_map.y; /* return result */ return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z; } ccl_device_inline void motion_triangle_verts_for_step(KernelGlobals *kg, uint4 tri_vindex, int offset, int numverts, int numsteps, int step, float3 verts[3]) { if(step == numsteps) { /* center step: regular vertex location */ verts[0] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0)); verts[1] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1)); verts[2] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2)); } else { /* center step not store in this array */ if(step > numsteps) step--; offset += step*numverts; verts[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.x)); verts[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.y)); verts[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.z)); } } ccl_device_inline void motion_triangle_normals_for_step(KernelGlobals *kg, uint4 tri_vindex, int offset, int numverts, int numsteps, int step, float3 normals[3]) { if(step == numsteps) { /* center step: regular vertex location */ normals[0] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.x)); normals[1] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.y)); normals[2] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.z)); } else { /* center step is not stored in this array */ if(step > numsteps) step--; offset += step*numverts; normals[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.x)); normals[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.y)); normals[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.z)); } } ccl_device_inline void motion_triangle_vertices(KernelGlobals *kg, int object, int prim, float time, float3 verts[3]) { /* get motion info */ int numsteps, numverts; object_motion_info(kg, object, &numsteps, &numverts, NULL); /* figure out which steps we need to fetch and their interpolation factor */ int maxstep = numsteps*2; int step = min((int)(time*maxstep), maxstep-1); float t = time*maxstep - step; /* find attribute */ AttributeElement elem; int offset = find_attribute_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem); kernel_assert(offset != ATTR_STD_NOT_FOUND); /* fetch vertex coordinates */ float3 next_verts[3]; uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim); motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts); motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts); /* interpolate between steps */ verts[0] = (1.0f - t)*verts[0] + t*next_verts[0]; verts[1] = (1.0f - t)*verts[1] + t*next_verts[1]; verts[2] = (1.0f - t)*verts[2] + t*next_verts[2]; } ccl_device_inline float3 motion_triangle_smooth_normal(KernelGlobals *kg, float3 Ng, int object, int prim, float u, float v, float time) { /* get motion info */ int numsteps, numverts; object_motion_info(kg, object, &numsteps, &numverts, NULL); /* figure out which steps we need to fetch and their interpolation factor */ int maxstep = numsteps*2; int step = min((int)(time*maxstep), maxstep-1); float t = time*maxstep - step; /* find attribute */ AttributeElement elem; int offset = find_attribute_motion(kg, object, ATTR_STD_MOTION_VERTEX_NORMAL, &elem); kernel_assert(offset != ATTR_STD_NOT_FOUND); /* fetch normals */ float3 normals[3], next_normals[3]; uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim); motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals); motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_normals); /* interpolate between steps */ normals[0] = (1.0f - t)*normals[0] + t*next_normals[0]; normals[1] = (1.0f - t)*normals[1] + t*next_normals[1]; normals[2] = (1.0f - t)*normals[2] + t*next_normals[2]; /* interpolate between vertices */ float w = 1.0f - u - v; float3 N = safe_normalize(u*normals[0] + v*normals[1] + w*normals[2]); return is_zero(N)? Ng: N; } CCL_NAMESPACE_END