/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Object Primitive * * All mesh and curve primitives are part of an object. The same mesh and curves * may be instanced multiple times by different objects. * * If the mesh is not instanced multiple times, the object will not be explicitly * stored as a primitive in the BVH, rather the bare triangles are curved are * directly primitives in the BVH with world space locations applied, and the object * ID is looked up afterwards. */ CCL_NAMESPACE_BEGIN /* Object attributes, for now a fixed size and contents */ enum ObjectTransform { OBJECT_TRANSFORM = 0, OBJECT_INVERSE_TRANSFORM = 1, }; enum ObjectVectorTransform { OBJECT_PASS_MOTION_PRE = 0, OBJECT_PASS_MOTION_POST = 1 }; /* Object to world space transformation */ ccl_device_inline Transform object_fetch_transform(KernelGlobals *kg, int object, enum ObjectTransform type) { if (type == OBJECT_INVERSE_TRANSFORM) { return kernel_tex_fetch(__objects, object).itfm; } else { return kernel_tex_fetch(__objects, object).tfm; } } /* Lamp to world space transformation */ ccl_device_inline Transform lamp_fetch_transform(KernelGlobals *kg, int lamp, bool inverse) { if (inverse) { return kernel_tex_fetch(__lights, lamp).itfm; } else { return kernel_tex_fetch(__lights, lamp).tfm; } } /* Object to world space transformation for motion vectors */ ccl_device_inline Transform object_fetch_motion_pass_transform(KernelGlobals *kg, int object, enum ObjectVectorTransform type) { int offset = object * OBJECT_MOTION_PASS_SIZE + (int)type; return kernel_tex_fetch(__object_motion_pass, offset); } /* Motion blurred object transformations */ #ifdef __OBJECT_MOTION__ ccl_device_inline Transform object_fetch_transform_motion(KernelGlobals *kg, int object, float time) { const uint motion_offset = kernel_tex_fetch(__objects, object).motion_offset; const ccl_global DecomposedTransform *motion = &kernel_tex_fetch(__object_motion, motion_offset); const uint num_steps = kernel_tex_fetch(__objects, object).numsteps * 2 + 1; Transform tfm; transform_motion_array_interpolate(&tfm, motion, num_steps, time); return tfm; } ccl_device_inline Transform object_fetch_transform_motion_test(KernelGlobals *kg, int object, float time, Transform *itfm) { int object_flag = kernel_tex_fetch(__object_flag, object); if (object_flag & SD_OBJECT_MOTION) { /* if we do motion blur */ Transform tfm = object_fetch_transform_motion(kg, object, time); if (itfm) *itfm = transform_quick_inverse(tfm); return tfm; } else { Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); if (itfm) *itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); return tfm; } } #endif /* Transform position from object to world space */ ccl_device_inline void object_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P) { #ifdef __OBJECT_MOTION__ *P = transform_point_auto(&sd->ob_tfm, *P); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); *P = transform_point(&tfm, *P); #endif } /* Transform position from world to object space */ ccl_device_inline void object_inverse_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P) { #ifdef __OBJECT_MOTION__ *P = transform_point_auto(&sd->ob_itfm, *P); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM); *P = transform_point(&tfm, *P); #endif } /* Transform normal from world to object space */ ccl_device_inline void object_inverse_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N) { #ifdef __OBJECT_MOTION__ if ((sd->object != OBJECT_NONE) || (sd->type == PRIMITIVE_LAMP)) { *N = normalize(transform_direction_transposed_auto(&sd->ob_tfm, *N)); } #else if (sd->object != OBJECT_NONE) { Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); *N = normalize(transform_direction_transposed(&tfm, *N)); } else if (sd->type == PRIMITIVE_LAMP) { Transform tfm = lamp_fetch_transform(kg, sd->lamp, false); *N = normalize(transform_direction_transposed(&tfm, *N)); } #endif } /* Transform normal from object to world space */ ccl_device_inline void object_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N) { #ifdef __OBJECT_MOTION__ *N = normalize(transform_direction_transposed_auto(&sd->ob_itfm, *N)); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM); *N = normalize(transform_direction_transposed(&tfm, *N)); #endif } /* Transform direction vector from object to world space */ ccl_device_inline void object_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D) { #ifdef __OBJECT_MOTION__ *D = transform_direction_auto(&sd->ob_tfm, *D); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); *D = transform_direction(&tfm, *D); #endif } /* Transform direction vector from world to object space */ ccl_device_inline void object_inverse_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D) { #ifdef __OBJECT_MOTION__ *D = transform_direction_auto(&sd->ob_itfm, *D); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM); *D = transform_direction(&tfm, *D); #endif } /* Object center position */ ccl_device_inline float3 object_location(KernelGlobals *kg, const ShaderData *sd) { if (sd->object == OBJECT_NONE) return make_float3(0.0f, 0.0f, 0.0f); #ifdef __OBJECT_MOTION__ return make_float3(sd->ob_tfm.x.w, sd->ob_tfm.y.w, sd->ob_tfm.z.w); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); return make_float3(tfm.x.w, tfm.y.w, tfm.z.w); #endif } /* Total surface area of object */ ccl_device_inline float object_surface_area(KernelGlobals *kg, int object) { return kernel_tex_fetch(__objects, object).surface_area; } /* Color of the object */ ccl_device_inline float3 object_color(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return make_float3(0.0f, 0.0f, 0.0f); const ccl_global KernelObject *kobject = &kernel_tex_fetch(__objects, object); return make_float3(kobject->color[0], kobject->color[1], kobject->color[2]); } /* Pass ID number of object */ ccl_device_inline float object_pass_id(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return 0.0f; return kernel_tex_fetch(__objects, object).pass_id; } /* Per lamp random number for shader variation */ ccl_device_inline float lamp_random_number(KernelGlobals *kg, int lamp) { if (lamp == LAMP_NONE) return 0.0f; return kernel_tex_fetch(__lights, lamp).random; } /* Per object random number for shader variation */ ccl_device_inline float object_random_number(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return 0.0f; return kernel_tex_fetch(__objects, object).random_number; } /* Particle ID from which this object was generated */ ccl_device_inline int object_particle_id(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return 0; return kernel_tex_fetch(__objects, object).particle_index; } /* Generated texture coordinate on surface from where object was instanced */ ccl_device_inline float3 object_dupli_generated(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return make_float3(0.0f, 0.0f, 0.0f); const ccl_global KernelObject *kobject = &kernel_tex_fetch(__objects, object); return make_float3( kobject->dupli_generated[0], kobject->dupli_generated[1], kobject->dupli_generated[2]); } /* UV texture coordinate on surface from where object was instanced */ ccl_device_inline float3 object_dupli_uv(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return make_float3(0.0f, 0.0f, 0.0f); const ccl_global KernelObject *kobject = &kernel_tex_fetch(__objects, object); return make_float3(kobject->dupli_uv[0], kobject->dupli_uv[1], 0.0f); } /* Information about mesh for motion blurred triangles and curves */ ccl_device_inline void object_motion_info( KernelGlobals *kg, int object, int *numsteps, int *numverts, int *numkeys) { if (numkeys) { *numkeys = kernel_tex_fetch(__objects, object).numkeys; } if (numsteps) *numsteps = kernel_tex_fetch(__objects, object).numsteps; if (numverts) *numverts = kernel_tex_fetch(__objects, object).numverts; } /* Offset to an objects patch map */ ccl_device_inline uint object_patch_map_offset(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return 0; return kernel_tex_fetch(__objects, object).patch_map_offset; } /* Volume step size */ ccl_device_inline float object_volume_density(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) { return 1.0f; } return kernel_tex_fetch(__objects, object).surface_area; } ccl_device_inline float object_volume_step_size(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) { return kernel_data.background.volume_step_size; } return kernel_tex_fetch(__object_volume_step, object); } /* Pass ID for shader */ ccl_device int shader_pass_id(KernelGlobals *kg, const ShaderData *sd) { return kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).pass_id; } /* Cryptomatte ID */ ccl_device_inline float object_cryptomatte_id(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return 0.0f; return kernel_tex_fetch(__objects, object).cryptomatte_object; } ccl_device_inline float object_cryptomatte_asset_id(KernelGlobals *kg, int object) { if (object == OBJECT_NONE) return 0; return kernel_tex_fetch(__objects, object).cryptomatte_asset; } /* Particle data from which object was instanced */ ccl_device_inline uint particle_index(KernelGlobals *kg, int particle) { return kernel_tex_fetch(__particles, particle).index; } ccl_device float particle_age(KernelGlobals *kg, int particle) { return kernel_tex_fetch(__particles, particle).age; } ccl_device float particle_lifetime(KernelGlobals *kg, int particle) { return kernel_tex_fetch(__particles, particle).lifetime; } ccl_device float particle_size(KernelGlobals *kg, int particle) { return kernel_tex_fetch(__particles, particle).size; } ccl_device float4 particle_rotation(KernelGlobals *kg, int particle) { return kernel_tex_fetch(__particles, particle).rotation; } ccl_device float3 particle_location(KernelGlobals *kg, int particle) { return float4_to_float3(kernel_tex_fetch(__particles, particle).location); } ccl_device float3 particle_velocity(KernelGlobals *kg, int particle) { return float4_to_float3(kernel_tex_fetch(__particles, particle).velocity); } ccl_device float3 particle_angular_velocity(KernelGlobals *kg, int particle) { return float4_to_float3(kernel_tex_fetch(__particles, particle).angular_velocity); } /* Object intersection in BVH */ ccl_device_inline float3 bvh_clamp_direction(float3 dir) { const float ooeps = 8.271806E-25f; return make_float3((fabsf(dir.x) > ooeps) ? dir.x : copysignf(ooeps, dir.x), (fabsf(dir.y) > ooeps) ? dir.y : copysignf(ooeps, dir.y), (fabsf(dir.z) > ooeps) ? dir.z : copysignf(ooeps, dir.z)); } ccl_device_inline float3 bvh_inverse_direction(float3 dir) { return rcp(dir); } /* Transform ray into object space to enter static object in BVH */ ccl_device_inline float bvh_instance_push( KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float t) { Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); *P = transform_point(&tfm, ray->P); float len; *dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len)); *idir = bvh_inverse_direction(*dir); if (t != FLT_MAX) { t *= len; } return t; } /* Transorm ray to exit static object in BVH */ ccl_device_inline float bvh_instance_pop( KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float t) { if (t != FLT_MAX) { Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); t /= len(transform_direction(&tfm, ray->D)); } *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); return t; } /* Same as above, but returns scale factor to apply to multiple intersection distances */ ccl_device_inline void bvh_instance_pop_factor(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t_fac) { Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); *t_fac = 1.0f / len(transform_direction(&tfm, ray->D)); *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); } #ifdef __OBJECT_MOTION__ /* Transform ray into object space to enter motion blurred object in BVH */ ccl_device_inline float bvh_instance_motion_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float t, Transform *itfm) { object_fetch_transform_motion_test(kg, object, ray->time, itfm); *P = transform_point(itfm, ray->P); float len; *dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len)); *idir = bvh_inverse_direction(*dir); if (t != FLT_MAX) { t *= len; } return t; } /* Transorm ray to exit motion blurred object in BVH */ ccl_device_inline float bvh_instance_motion_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float t, Transform *itfm) { if (t != FLT_MAX) { t /= len(transform_direction(itfm, ray->D)); } *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); return t; } /* Same as above, but returns scale factor to apply to multiple intersection distances */ ccl_device_inline void bvh_instance_motion_pop_factor(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t_fac, Transform *itfm) { *t_fac = 1.0f / len(transform_direction(itfm, ray->D)); *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); } #endif /* TODO(sergey): This is only for until we've got OpenCL 2.0 * on all devices we consider supported. It'll be replaced with * generic address space. */ #ifdef __KERNEL_OPENCL__ ccl_device_inline void object_position_transform_addrspace(KernelGlobals *kg, const ShaderData *sd, ccl_addr_space float3 *P) { float3 private_P = *P; object_position_transform(kg, sd, &private_P); *P = private_P; } ccl_device_inline void object_dir_transform_addrspace(KernelGlobals *kg, const ShaderData *sd, ccl_addr_space float3 *D) { float3 private_D = *D; object_dir_transform(kg, sd, &private_D); *D = private_D; } ccl_device_inline void object_normal_transform_addrspace(KernelGlobals *kg, const ShaderData *sd, ccl_addr_space float3 *N) { float3 private_N = *N; object_normal_transform(kg, sd, &private_N); *N = private_N; } #endif #ifndef __KERNEL_OPENCL__ # define object_position_transform_auto object_position_transform # define object_dir_transform_auto object_dir_transform # define object_normal_transform_auto object_normal_transform #else # define object_position_transform_auto object_position_transform_addrspace # define object_dir_transform_auto object_dir_transform_addrspace # define object_normal_transform_auto object_normal_transform_addrspace #endif CCL_NAMESPACE_END