/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2014, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_HAIR: hair curve rendering * BVH_MOTION: motion blur rendering * */ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint max_hits, uint *num_hits) { /* TODO(sergey): * - Likely and unlikely for if() statements. * - Test restrict attribute for pointers. */ /* Traversal stack in CUDA thread-local memory. */ QBVHStackItem traversalStack[BVH_QSTACK_SIZE]; traversalStack[0].addr = ENTRYPOINT_SENTINEL; /* Traversal variables in registers. */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* Ray parameters in registers. */ const float tmax = ray->t; float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; float isect_t = tmax; #if BVH_FEATURE(BVH_MOTION) Transform ob_tfm; #endif *num_hits = 0; isect_array->t = tmax; #ifndef __KERNEL_SSE41__ if(!isfinite(P.x)) { return false; } #endif #if BVH_FEATURE(BVH_INSTANCING) int num_hits_in_instance = 0; #endif ssef tnear(0.0f), tfar(tmax); sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ float3 P_idir = P*idir; sse3f P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); #else sse3f org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); #endif /* Offsets to select the side that becomes the lower or upper bound. */ int near_x, near_y, near_z; int far_x, far_y, far_z; if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } IsectPrecalc isect_precalc; triangle_intersect_precalc(dir, &isect_precalc); /* Traversal loop. */ do { do { /* Traverse internal nodes. */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { ssef dist; int traverseChild = qbvh_node_intersect(kg, tnear, tfar, #ifdef __KERNEL_AVX2__ P_idir4, #else org, #endif idir4, near_x, near_y, near_z, far_x, far_y, far_z, nodeAddr, &dist); if(traverseChild != 0) { float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_QNODE_SIZE+6); /* One child is hit, continue with that child. */ int r = __bscf(traverseChild); if(traverseChild == 0) { nodeAddr = __float_as_int(cnodes[r]); continue; } /* Two children are hit, push far child, and continue with * closer child. */ int c0 = __float_as_int(cnodes[r]); float d0 = ((float*)&dist)[r]; r = __bscf(traverseChild); int c1 = __float_as_int(cnodes[r]); float d1 = ((float*)&dist)[r]; if(traverseChild == 0) { if(d1 < d0) { nodeAddr = c1; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c0; traversalStack[stackPtr].dist = d0; continue; } else { nodeAddr = c0; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c1; traversalStack[stackPtr].dist = d1; continue; } } /* Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c1; traversalStack[stackPtr].dist = d1; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c0; traversalStack[stackPtr].dist = d0; /* Three children are hit, push all onto stack and sort 3 * stack items, continue with closest child. */ r = __bscf(traverseChild); int c2 = __float_as_int(cnodes[r]); float d2 = ((float*)&dist)[r]; if(traverseChild == 0) { ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c2; traversalStack[stackPtr].dist = d2; qbvh_stack_sort(&traversalStack[stackPtr], &traversalStack[stackPtr - 1], &traversalStack[stackPtr - 2]); nodeAddr = traversalStack[stackPtr].addr; --stackPtr; continue; } /* Four children are hit, push all onto stack and sort 4 * stack items, continue with closest child. */ r = __bscf(traverseChild); int c3 = __float_as_int(cnodes[r]); float d3 = ((float*)&dist)[r]; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c3; traversalStack[stackPtr].dist = d3; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c2; traversalStack[stackPtr].dist = d2; qbvh_stack_sort(&traversalStack[stackPtr], &traversalStack[stackPtr - 1], &traversalStack[stackPtr - 2], &traversalStack[stackPtr - 3]); } nodeAddr = traversalStack[stackPtr].addr; --stackPtr; } /* If node is leaf, fetch triangle list. */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-nodeAddr-1)*BVH_QNODE_LEAF_SIZE); #ifdef __VISIBILITY_FLAG__ if((__float_as_uint(leaf.z) & PATH_RAY_SHADOW) == 0) { /* Pop. */ nodeAddr = traversalStack[stackPtr].addr; --stackPtr; continue; } #endif int primAddr = __float_as_int(leaf.x); #if BVH_FEATURE(BVH_INSTANCING) if(primAddr >= 0) { #endif int primAddr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); const uint p_type = type & PRIMITIVE_ALL; /* Pop. */ nodeAddr = traversalStack[stackPtr].addr; --stackPtr; /* Primitive intersection. */ while(primAddr < primAddr2) { kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); bool hit; /* todo: specialized intersect functions which don't fill in * isect unless needed and check SD_HAS_TRANSPARENT_SHADOW? * might give a few % performance improvement */ switch(p_type) { case PRIMITIVE_TRIANGLE: { hit = triangle_intersect(kg, &isect_precalc, isect_array, P, PATH_RAY_SHADOW, object, primAddr); break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, PATH_RAY_SHADOW, object, primAddr); break; } #endif #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE: case PRIMITIVE_MOTION_CURVE: { if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) hit = bvh_cardinal_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0); else hit = bvh_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0); break; } #endif default: { hit = false; break; } } /* Shadow ray early termination. */ if(hit) { /* detect if this surface has a shader with transparent shadows */ /* todo: optimize so primitive visibility flag indicates if * the primitive has a transparent shadow shader? */ int prim = kernel_tex_fetch(__prim_index, isect_array->prim); int shader = 0; #ifdef __HAIR__ if(kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE) #endif { shader = kernel_tex_fetch(__tri_shader, prim); } #ifdef __HAIR__ else { float4 str = kernel_tex_fetch(__curves, prim); shader = __float_as_int(str.z); } #endif int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*2); /* if no transparent shadows, all light is blocked */ if(!(flag & SD_HAS_TRANSPARENT_SHADOW)) { return true; } /* if maximum number of hits reached, block all light */ else if(*num_hits == max_hits) { return true; } /* move on to next entry in intersections array */ isect_array++; (*num_hits)++; #if BVH_FEATURE(BVH_INSTANCING) num_hits_in_instance++; #endif isect_array->t = isect_t; } primAddr++; } } #if BVH_FEATURE(BVH_INSTANCING) else { /* Instance push. */ object = kernel_tex_fetch(__prim_object, -primAddr-1); #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm); #else bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t); #endif num_hits_in_instance = 0; isect_array->t = isect_t; if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } tfar = ssef(isect_t); idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ P_idir = P*idir; P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); #else org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); #endif triangle_intersect_precalc(dir, &isect_precalc); ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); #if BVH_FEATURE(BVH_INSTANCING) if(stackPtr >= 0) { kernel_assert(object != OBJECT_NONE); if(num_hits_in_instance) { float t_fac; #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_tfm); #else bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac); #endif /* scale isect->t to adjust for instancing */ for(int i = 0; i < num_hits_in_instance; i++) (isect_array-i-1)->t *= t_fac; } else { float ignore_t = FLT_MAX; #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_tfm); #else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t); #endif } isect_t = tmax; isect_array->t = isect_t; if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } tfar = ssef(tmax); idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ P_idir = P*idir; P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); #else org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); #endif triangle_intersect_precalc(dir, &isect_precalc); object = OBJECT_NONE; nodeAddr = traversalStack[stackPtr].addr; --stackPtr; } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); return false; }