/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation, * and code copyright 2009-2012 Intel Corporation * * Modifications Copyright 2011-2014, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a template BVH traversal function, where various features can be * enabled/disabled. This way we can compile optimized versions for each case * without new features slowing things down. * * BVH_INSTANCING: object instancing * BVH_HAIR: hair curve rendering * BVH_HAIR_MINIMUM_WIDTH: hair curve rendering with minimum width * BVH_MOTION: motion blur rendering * */ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg, const Ray *ray, Intersection *isect, const uint visibility #if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) ,uint *lcg_state, float difl, float extmax #endif ) { /* TODO(sergey): * - Test if pushing distance on the stack helps (for non shadow rays). * - Separate version for shadow rays. * - Likely and unlikely for if() statements. * - Test restrict attribute for pointers. */ /* Traversal stack in CUDA thread-local memory. */ QBVHStackItem traversalStack[BVH_QSTACK_SIZE]; traversalStack[0].addr = ENTRYPOINT_SENTINEL; traversalStack[0].dist = -FLT_MAX; /* Traversal variables in registers. */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; float nodeDist = -FLT_MAX; /* Ray parameters in registers. */ float3 P = ray->P; float3 dir = bvh_clamp_direction(ray->D); float3 idir = bvh_inverse_direction(dir); int object = OBJECT_NONE; #if BVH_FEATURE(BVH_MOTION) Transform ob_tfm; #endif #ifndef __KERNEL_SSE41__ if(!isfinite(P.x)) { return false; } #endif isect->t = ray->t; isect->u = 0.0f; isect->v = 0.0f; isect->prim = PRIM_NONE; isect->object = OBJECT_NONE; #if defined(__KERNEL_DEBUG__) isect->num_traversal_steps = 0; isect->num_traversed_instances = 0; #endif ssef tnear(0.0f), tfar(ray->t); sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ float3 P_idir = P*idir; sse3f P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); #else sse3f org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); #endif /* Offsets to select the side that becomes the lower or upper bound. */ int near_x, near_y, near_z; int far_x, far_y, far_z; if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } IsectPrecalc isect_precalc; triangle_intersect_precalc(dir, &isect_precalc); /* Traversal loop. */ do { do { /* Traverse internal nodes. */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { if(UNLIKELY(nodeDist > isect->t)) { /* Pop. */ nodeAddr = traversalStack[stackPtr].addr; nodeDist = traversalStack[stackPtr].dist; --stackPtr; continue; } int traverseChild; ssef dist; #if defined(__KERNEL_DEBUG__) isect->num_traversal_steps++; #endif #if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH) if(difl != 0.0f) { /* NOTE: We extend all the child BB instead of fetching * and checking visibility flags for each of the, * * Need to test if doing opposite would be any faster. */ traverseChild = qbvh_node_intersect_robust(kg, tnear, tfar, #ifdef __KERNEL_AVX2__ P_idir4, #else org, #endif idir4, near_x, near_y, near_z, far_x, far_y, far_z, nodeAddr, difl, &dist); } else #endif { traverseChild = qbvh_node_intersect(kg, tnear, tfar, #ifdef __KERNEL_AVX2__ P_idir4, #else org, #endif idir4, near_x, near_y, near_z, far_x, far_y, far_z, nodeAddr, &dist); } if(traverseChild != 0) { float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_QNODE_SIZE+6); /* One child is hit, continue with that child. */ int r = __bscf(traverseChild); float d0 = ((float*)&dist)[r]; if(traverseChild == 0) { nodeAddr = __float_as_int(cnodes[r]); nodeDist = d0; continue; } /* Two children are hit, push far child, and continue with * closer child. */ int c0 = __float_as_int(cnodes[r]); r = __bscf(traverseChild); int c1 = __float_as_int(cnodes[r]); float d1 = ((float*)&dist)[r]; if(traverseChild == 0) { if(d1 < d0) { nodeAddr = c1; nodeDist = d1; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c0; traversalStack[stackPtr].dist = d0; continue; } else { nodeAddr = c0; nodeDist = d0; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c1; traversalStack[stackPtr].dist = d1; continue; } } /* Here starts the slow path for 3 or 4 hit children. We push * all nodes onto the stack to sort them there. */ ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c1; traversalStack[stackPtr].dist = d1; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c0; traversalStack[stackPtr].dist = d0; /* Three children are hit, push all onto stack and sort 3 * stack items, continue with closest child. */ r = __bscf(traverseChild); int c2 = __float_as_int(cnodes[r]); float d2 = ((float*)&dist)[r]; if(traverseChild == 0) { ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c2; traversalStack[stackPtr].dist = d2; qbvh_stack_sort(&traversalStack[stackPtr], &traversalStack[stackPtr - 1], &traversalStack[stackPtr - 2]); nodeAddr = traversalStack[stackPtr].addr; nodeDist = traversalStack[stackPtr].dist; --stackPtr; continue; } /* Four children are hit, push all onto stack and sort 4 * stack items, continue with closest child. */ r = __bscf(traverseChild); int c3 = __float_as_int(cnodes[r]); float d3 = ((float*)&dist)[r]; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c3; traversalStack[stackPtr].dist = d3; ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = c2; traversalStack[stackPtr].dist = d2; qbvh_stack_sort(&traversalStack[stackPtr], &traversalStack[stackPtr - 1], &traversalStack[stackPtr - 2], &traversalStack[stackPtr - 3]); } nodeAddr = traversalStack[stackPtr].addr; nodeDist = traversalStack[stackPtr].dist; --stackPtr; } /* If node is leaf, fetch triangle list. */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-nodeAddr-1)*BVH_QNODE_LEAF_SIZE); #ifdef __VISIBILITY_FLAG__ if(UNLIKELY((nodeDist > isect->t) || ((__float_as_uint(leaf.z) & visibility) == 0))) #else if(UNLIKELY((nodeDist > isect->t))) #endif { /* Pop. */ nodeAddr = traversalStack[stackPtr].addr; nodeDist = traversalStack[stackPtr].dist; --stackPtr; continue; } int primAddr = __float_as_int(leaf.x); #if BVH_FEATURE(BVH_INSTANCING) if(primAddr >= 0) { #endif int primAddr2 = __float_as_int(leaf.y); const uint type = __float_as_int(leaf.w); /* Pop. */ nodeAddr = traversalStack[stackPtr].addr; nodeDist = traversalStack[stackPtr].dist; --stackPtr; /* Primitive intersection. */ switch(type & PRIMITIVE_ALL) { case PRIMITIVE_TRIANGLE: { for(; primAddr < primAddr2; primAddr++) { #if defined(__KERNEL_DEBUG__) isect->num_traversal_steps++; #endif kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); if(triangle_intersect(kg, &isect_precalc, isect, P, visibility, object, primAddr)) { tfar = ssef(isect->t); /* Shadow ray early termination. */ if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; } } break; } #if BVH_FEATURE(BVH_MOTION) case PRIMITIVE_MOTION_TRIANGLE: { for(; primAddr < primAddr2; primAddr++) { #if defined(__KERNEL_DEBUG__) isect->num_traversal_steps++; #endif kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); if(motion_triangle_intersect(kg, isect, P, dir, ray->time, visibility, object, primAddr)) { tfar = ssef(isect->t); /* Shadow ray early termination. */ if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; } } break; } #endif /* BVH_FEATURE(BVH_MOTION) */ #if BVH_FEATURE(BVH_HAIR) case PRIMITIVE_CURVE: case PRIMITIVE_MOTION_CURVE: { for(; primAddr < primAddr2; primAddr++) { #if defined(__KERNEL_DEBUG__) isect->num_traversal_steps++; #endif kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); bool hit; if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) hit = bvh_cardinal_curve_intersect(kg, isect, P, dir, visibility, object, primAddr, ray->time, type, lcg_state, difl, extmax); else hit = bvh_curve_intersect(kg, isect, P, dir, visibility, object, primAddr, ray->time, type, lcg_state, difl, extmax); if(hit) { tfar = ssef(isect->t); /* Shadow ray early termination. */ if(visibility == PATH_RAY_SHADOW_OPAQUE) return true; } } break; } #endif /* BVH_FEATURE(BVH_HAIR) */ } } #if BVH_FEATURE(BVH_INSTANCING) else { /* Instance push. */ object = kernel_tex_fetch(__prim_object, -primAddr-1); #if BVH_FEATURE(BVH_MOTION) qbvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &nodeDist, &ob_tfm); #else qbvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t, &nodeDist); #endif if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } tfar = ssef(isect->t); idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ P_idir = P*idir; P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); #else org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); #endif triangle_intersect_precalc(dir, &isect_precalc); ++stackPtr; kernel_assert(stackPtr < BVH_QSTACK_SIZE); traversalStack[stackPtr].addr = ENTRYPOINT_SENTINEL; traversalStack[stackPtr].dist = -FLT_MAX; nodeAddr = kernel_tex_fetch(__object_node, object); #if defined(__KERNEL_DEBUG__) isect->num_traversed_instances++; #endif } } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); #if BVH_FEATURE(BVH_INSTANCING) if(stackPtr >= 0) { kernel_assert(object != OBJECT_NONE); /* Instance pop. */ #if BVH_FEATURE(BVH_MOTION) bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_tfm); #else bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t); #endif if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } tfar = ssef(isect->t); idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); #ifdef __KERNEL_AVX2__ P_idir = P*idir; P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); #else org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); #endif triangle_intersect_precalc(dir, &isect_precalc); object = OBJECT_NONE; nodeAddr = traversalStack[stackPtr].addr; nodeDist = traversalStack[stackPtr].dist; --stackPtr; } #endif /* FEATURE(BVH_INSTANCING) */ } while(nodeAddr != ENTRYPOINT_SENTINEL); return (isect->prim != PRIM_NONE); }