/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Triangle Primitive * * Basic triangle with 3 vertices is used to represent mesh surfaces. For BVH * ray intersection we use a precomputed triangle storage to accelerate * intersection at the cost of more memory usage */ CCL_NAMESPACE_BEGIN /* normal on triangle */ ccl_device_inline float3 triangle_normal(KernelGlobals *kg, ShaderData *sd) { /* load triangle vertices */ const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim); const float3 v0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0)); const float3 v1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1)); const float3 v2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2)); /* return normal */ if(sd->object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) { return normalize(cross(v2 - v0, v1 - v0)); } else { return normalize(cross(v1 - v0, v2 - v0)); } } /* point and normal on triangle */ ccl_device_inline void triangle_point_normal(KernelGlobals *kg, int object, int prim, float u, float v, float3 *P, float3 *Ng, int *shader) { /* load triangle vertices */ const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim); float3 v0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0)); float3 v1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1)); float3 v2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2)); /* compute point */ float t = 1.0f - u - v; *P = (u*v0 + v*v1 + t*v2); /* get object flags */ int object_flag = kernel_tex_fetch(__object_flag, object); /* compute normal */ if(object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) { *Ng = normalize(cross(v2 - v0, v1 - v0)); } else { *Ng = normalize(cross(v1 - v0, v2 - v0)); } /* shader`*/ *shader = kernel_tex_fetch(__tri_shader, prim); } /* Triangle vertex locations */ ccl_device_inline void triangle_vertices(KernelGlobals *kg, int prim, float3 P[3]) { const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim); P[0] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0)); P[1] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1)); P[2] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2)); } /* Interpolate smooth vertex normal from vertices */ ccl_device_inline float3 triangle_smooth_normal(KernelGlobals *kg, int prim, float u, float v) { /* load triangle vertices */ const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim); float3 n0 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.x)); float3 n1 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.y)); float3 n2 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.z)); return normalize((1.0f - u - v)*n2 + u*n0 + v*n1); } /* Ray differentials on triangle */ ccl_device_inline void triangle_dPdudv(KernelGlobals *kg, int prim, ccl_addr_space float3 *dPdu, ccl_addr_space float3 *dPdv) { /* fetch triangle vertex coordinates */ const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim); const float3 p0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0)); const float3 p1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1)); const float3 p2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2)); /* compute derivatives of P w.r.t. uv */ *dPdu = (p0 - p2); *dPdv = (p1 - p2); } /* Reading attributes on various triangle elements */ ccl_device float triangle_attribute_float(KernelGlobals *kg, const ShaderData *sd, const AttributeDescriptor desc, float *dx, float *dy) { if(desc.element == ATTR_ELEMENT_FACE) { if(dx) *dx = 0.0f; if(dy) *dy = 0.0f; return kernel_tex_fetch(__attributes_float, desc.offset + sd->prim); } else if(desc.element == ATTR_ELEMENT_VERTEX || desc.element == ATTR_ELEMENT_VERTEX_MOTION) { uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim); float f0 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.x); float f1 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.y); float f2 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.z); #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2; if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2; #endif return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2; } else if(desc.element == ATTR_ELEMENT_CORNER) { int tri = desc.offset + sd->prim*3; float f0 = kernel_tex_fetch(__attributes_float, tri + 0); float f1 = kernel_tex_fetch(__attributes_float, tri + 1); float f2 = kernel_tex_fetch(__attributes_float, tri + 2); #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2; if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2; #endif return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2; } else { if(dx) *dx = 0.0f; if(dy) *dy = 0.0f; return 0.0f; } } ccl_device float3 triangle_attribute_float3(KernelGlobals *kg, const ShaderData *sd, const AttributeDescriptor desc, float3 *dx, float3 *dy) { if(desc.element == ATTR_ELEMENT_FACE) { if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); return float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + sd->prim)); } else if(desc.element == ATTR_ELEMENT_VERTEX || desc.element == ATTR_ELEMENT_VERTEX_MOTION) { uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim); float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.x)); float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.y)); float3 f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.z)); #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2; if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2; #endif return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2; } else if(desc.element == ATTR_ELEMENT_CORNER || desc.element == ATTR_ELEMENT_CORNER_BYTE) { int tri = desc.offset + sd->prim*3; float3 f0, f1, f2; if(desc.element == ATTR_ELEMENT_CORNER) { f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 0)); f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 1)); f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 2)); } else { f0 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 0)); f1 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 1)); f2 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 2)); } #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2; if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2; #endif return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2; } else { if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); return make_float3(0.0f, 0.0f, 0.0f); } } CCL_NAMESPACE_END