/* * Copyright 2014, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Triangle/Ray intersections. * * For BVH ray intersection we use a precomputed triangle storage to accelerate * intersection at the cost of more memory usage. */ CCL_NAMESPACE_BEGIN /* Workaround stupidness of CUDA/OpenCL which doesn't allow to access indexed * component of float3 value. */ #ifndef __KERNEL_CPU__ # define IDX(vec, idx) \ ((idx == 0) ? ((vec).x) : ( (idx == 1) ? ((vec).y) : ((vec).z) )) #else # define IDX(vec, idx) ((vec)[idx]) #endif /* Ray-Triangle intersection for BVH traversal * * Sven Woop * Watertight Ray/Triangle Intersection * * http://jcgt.org/published/0002/01/05/paper.pdf */ /* Precalculated data for the ray->tri intersection. */ typedef struct IsectPrecalc { /* Maximal dimension kz, and orthogonal dimensions. */ int kx, ky, kz; /* Shear constants. */ float Sx, Sy, Sz; } IsectPrecalc; #if defined(__KERNEL_CUDA__) # if (defined(i386) || defined(_M_IX86)) # if __CUDA_ARCH__ > 500 ccl_device_noinline # else /* __CUDA_ARCH__ > 500 */ ccl_device_inline # endif /* __CUDA_ARCH__ > 500 */ # else /* (defined(i386) || defined(_M_IX86)) */ # if defined(__KERNEL_EXPERIMENTAL__) && (__CUDA_ARCH__ >= 500) ccl_device_noinline # else ccl_device_inline # endif # endif /* (defined(i386) || defined(_M_IX86)) */ #elif defined(__KERNEL_OPENCL_APPLE__) ccl_device_noinline #else /* defined(__KERNEL_OPENCL_APPLE__) */ ccl_device_inline #endif /* defined(__KERNEL_OPENCL_APPLE__) */ void triangle_intersect_precalc(float3 dir, IsectPrecalc *isect_precalc) { /* Calculate dimension where the ray direction is maximal. */ int kz = util_max_axis(make_float3(fabsf(dir.x), fabsf(dir.y), fabsf(dir.z))); int kx = kz + 1; if(kx == 3) kx = 0; int ky = kx + 1; if(ky == 3) ky = 0; /* Swap kx and ky dimensions to preserve winding direction of triangles. */ if(IDX(dir, kz) < 0.0f) { int tmp = kx; kx = ky; ky = tmp; } /* Calculate the shear constants. */ float inv_dir_z = 1.0f / IDX(dir, kz); isect_precalc->Sx = IDX(dir, kx) * inv_dir_z; isect_precalc->Sy = IDX(dir, ky) * inv_dir_z; isect_precalc->Sz = inv_dir_z; /* Store the dimensions. */ isect_precalc->kx = kx; isect_precalc->ky = ky; isect_precalc->kz = kz; } /* TODO(sergey): Make it general utility function. */ ccl_device_inline float xor_signmast(float x, int y) { return __int_as_float(__float_as_int(x) ^ y); } ccl_device_inline bool triangle_intersect(KernelGlobals *kg, const IsectPrecalc *isect_precalc, Intersection *isect, float3 P, uint visibility, int object, int triAddr) { const int kx = isect_precalc->kx; const int ky = isect_precalc->ky; const int kz = isect_precalc->kz; const float Sx = isect_precalc->Sx; const float Sy = isect_precalc->Sy; const float Sz = isect_precalc->Sz; /* Calculate vertices relative to ray origin. */ const float4 tri_a = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+0), tri_b = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+1), tri_c = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+2); const float3 A = make_float3(tri_a.x - P.x, tri_a.y - P.y, tri_a.z - P.z); const float3 B = make_float3(tri_b.x - P.x, tri_b.y - P.y, tri_b.z - P.z); const float3 C = make_float3(tri_c.x - P.x, tri_c.y - P.y, tri_c.z - P.z); const float A_kx = IDX(A, kx), A_ky = IDX(A, ky), A_kz = IDX(A, kz); const float B_kx = IDX(B, kx), B_ky = IDX(B, ky), B_kz = IDX(B, kz); const float C_kx = IDX(C, kx), C_ky = IDX(C, ky), C_kz = IDX(C, kz); /* Perform shear and scale of vertices. */ const float Ax = A_kx - Sx * A_kz; const float Ay = A_ky - Sy * A_kz; const float Bx = B_kx - Sx * B_kz; const float By = B_ky - Sy * B_kz; const float Cx = C_kx - Sx * C_kz; const float Cy = C_ky - Sy * C_kz; /* Calculate scaled barycentric coordinates. */ float U = Cx * By - Cy * Bx; int sign_mask = (__float_as_int(U) & 0x80000000); float V = Ax * Cy - Ay * Cx; if(sign_mask != (__float_as_int(V) & 0x80000000)) { return false; } float W = Bx * Ay - By * Ax; if(sign_mask != (__float_as_int(W) & 0x80000000)) { return false; } /* Calculate determinant. */ float det = U + V + W; if(UNLIKELY(det == 0.0f)) { return false; } /* Calculate scaled z−coordinates of vertices and use them to calculate * the hit distance. */ const float T = (U * A_kz + V * B_kz + W * C_kz) * Sz; const float sign_T = xor_signmast(T, sign_mask); if((sign_T < 0.0f) || (sign_T > isect->t * xor_signmast(det, sign_mask))) { return false; } #ifdef __VISIBILITY_FLAG__ /* visibility flag test. we do it here under the assumption * that most triangles are culled by node flags */ if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility) #endif { /* Normalize U, V, W, and T. */ const float inv_det = 1.0f / det; isect->prim = triAddr; isect->object = object; isect->type = PRIMITIVE_TRIANGLE; isect->u = U * inv_det; isect->v = V * inv_det; isect->t = T * inv_det; return true; } return false; } /* Special ray intersection routines for subsurface scattering. In that case we * only want to intersect with primitives in the same object, and if case of * multiple hits we pick a single random primitive as the intersection point. */ #ifdef __SUBSURFACE__ ccl_device_inline void triangle_intersect_subsurface( KernelGlobals *kg, const IsectPrecalc *isect_precalc, Intersection *isect_array, float3 P, int object, int triAddr, float tmax, uint *num_hits, uint *lcg_state, int max_hits) { const int kx = isect_precalc->kx; const int ky = isect_precalc->ky; const int kz = isect_precalc->kz; const float Sx = isect_precalc->Sx; const float Sy = isect_precalc->Sy; const float Sz = isect_precalc->Sz; /* Calculate vertices relative to ray origin. */ const float4 tri_a = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+0), tri_b = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+1), tri_c = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+2); const float3 A = make_float3(tri_a.x - P.x, tri_a.y - P.y, tri_a.z - P.z); const float3 B = make_float3(tri_b.x - P.x, tri_b.y - P.y, tri_b.z - P.z); const float3 C = make_float3(tri_c.x - P.x, tri_c.y - P.y, tri_c.z - P.z); const float A_kx = IDX(A, kx), A_ky = IDX(A, ky), A_kz = IDX(A, kz); const float B_kx = IDX(B, kx), B_ky = IDX(B, ky), B_kz = IDX(B, kz); const float C_kx = IDX(C, kx), C_ky = IDX(C, ky), C_kz = IDX(C, kz); /* Perform shear and scale of vertices. */ const float Ax = A_kx - Sx * A_kz; const float Ay = A_ky - Sy * A_kz; const float Bx = B_kx - Sx * B_kz; const float By = B_ky - Sy * B_kz; const float Cx = C_kx - Sx * C_kz; const float Cy = C_ky - Sy * C_kz; /* Calculate scaled barycentric coordinates. */ float U = Cx * By - Cy * Bx; int sign_mask = (__float_as_int(U) & 0x80000000); float V = Ax * Cy - Ay * Cx; if(sign_mask != (__float_as_int(V) & 0x80000000)) { return; } float W = Bx * Ay - By * Ax; if(sign_mask != (__float_as_int(W) & 0x80000000)) { return; } /* Calculate determinant. */ float det = U + V + W; if(UNLIKELY(det == 0.0f)) { return; } /* Calculate scaled z−coordinates of vertices and use them to calculate * the hit distance. */ const float T = (U * A_kz + V * B_kz + W * C_kz) * Sz; const float sign_T = xor_signmast(T, sign_mask); if((sign_T < 0.0f) || (sign_T > tmax * xor_signmast(det, sign_mask))) { return; } /* Normalize U, V, W, and T. */ const float inv_det = 1.0f / det; (*num_hits)++; int hit; if(*num_hits <= max_hits) { hit = *num_hits - 1; } else { /* reservoir sampling: if we are at the maximum number of * hits, randomly replace element or skip it */ hit = lcg_step_uint(lcg_state) % *num_hits; if(hit >= max_hits) return; } /* record intersection */ Intersection *isect = &isect_array[hit]; isect->prim = triAddr; isect->object = object; isect->type = PRIMITIVE_TRIANGLE; isect->u = U * inv_det; isect->v = V * inv_det; isect->t = T * inv_det; } #endif /* Refine triangle intersection to more precise hit point. For rays that travel * far the precision is often not so good, this reintersects the primitive from * a closer distance. */ /* Reintersections uses the paper: * * Tomas Moeller * Fast, minimum storage ray/triangle intersection * http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf */ ccl_device_inline float3 triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray) { float3 P = ray->P; float3 D = ray->D; float t = isect->t; #ifdef __INTERSECTION_REFINE__ if(isect->object != OBJECT_NONE) { if(UNLIKELY(t == 0.0f)) { return P; } #ifdef __OBJECT_MOTION__ Transform tfm = ccl_fetch(sd, ob_itfm); #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM); #endif P = transform_point(&tfm, P); D = transform_direction(&tfm, D*t); D = normalize_len(D, &t); } P = P + D*t; const float4 tri_a = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+0), tri_b = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+1), tri_c = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+2); float3 edge1 = make_float3(tri_a.x - tri_c.x, tri_a.y - tri_c.y, tri_a.z - tri_c.z); float3 edge2 = make_float3(tri_b.x - tri_c.x, tri_b.y - tri_c.y, tri_b.z - tri_c.z); float3 tvec = make_float3(P.x - tri_c.x, P.y - tri_c.y, P.z - tri_c.z); float3 qvec = cross(tvec, edge1); float3 pvec = cross(D, edge2); float rt = dot(edge2, qvec) / dot(edge1, pvec); P = P + D*rt; if(isect->object != OBJECT_NONE) { #ifdef __OBJECT_MOTION__ Transform tfm = ccl_fetch(sd, ob_tfm); #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM); #endif P = transform_point(&tfm, P); } return P; #else return P + D*t; #endif } /* Same as above, except that isect->t is assumed to be in object space for * instancing. */ ccl_device_inline float3 triangle_refine_subsurface(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray) { float3 P = ray->P; float3 D = ray->D; float t = isect->t; #ifdef __INTERSECTION_REFINE__ if(isect->object != OBJECT_NONE) { #ifdef __OBJECT_MOTION__ Transform tfm = ccl_fetch(sd, ob_itfm); #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM); #endif P = transform_point(&tfm, P); D = transform_direction(&tfm, D); D = normalize(D); } P = P + D*t; const float4 tri_a = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+0), tri_b = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+1), tri_c = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+2); float3 edge1 = make_float3(tri_a.x - tri_c.x, tri_a.y - tri_c.y, tri_a.z - tri_c.z); float3 edge2 = make_float3(tri_b.x - tri_c.x, tri_b.y - tri_c.y, tri_b.z - tri_c.z); float3 tvec = make_float3(P.x - tri_c.x, P.y - tri_c.y, P.z - tri_c.z); float3 qvec = cross(tvec, edge1); float3 pvec = cross(D, edge2); float rt = dot(edge2, qvec) / dot(edge1, pvec); P = P + D*rt; if(isect->object != OBJECT_NONE) { #ifdef __OBJECT_MOTION__ Transform tfm = ccl_fetch(sd, ob_tfm); #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM); #endif P = transform_point(&tfm, P); } return P; #else return P + D*t; #endif } #undef IDX CCL_NAMESPACE_END