/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ /* Motion Triangle Primitive * * These are stored as regular triangles, plus extra positions and normals at * times other than the frame center. Computing the triangle vertex positions * or normals at a given ray time is a matter of interpolation of the two steps * between which the ray time lies. * * The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION * and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes. */ #pragma once CCL_NAMESPACE_BEGIN /** * Use the barycentric coordinates to get the intersection location */ ccl_device_inline float3 motion_triangle_point_from_uv(KernelGlobals kg, ccl_private ShaderData *sd, const int isect_object, const int isect_prim, const float u, const float v, float3 verts[3]) { float w = 1.0f - u - v; float3 P = u * verts[0] + v * verts[1] + w * verts[2]; if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) { const Transform tfm = object_get_transform(kg, sd); P = transform_point(&tfm, P); } return P; } /* Ray intersection. We simply compute the vertex positions at the given ray * time and do a ray intersection with the resulting triangle. */ ccl_device_inline bool motion_triangle_intersect(KernelGlobals kg, ccl_private Intersection *isect, float3 P, float3 dir, float tmax, float time, uint visibility, int object, int prim, int prim_addr) { /* Get vertex locations for intersection. */ float3 verts[3]; motion_triangle_vertices(kg, object, prim, time, verts); /* Ray-triangle intersection, unoptimized. */ float t, u, v; if (ray_triangle_intersect(P, dir, tmax, verts[0], verts[1], verts[2], &u, &v, &t)) { #ifdef __VISIBILITY_FLAG__ /* Visibility flag test. we do it here under the assumption * that most triangles are culled by node flags. */ if (kernel_data_fetch(prim_visibility, prim_addr) & visibility) #endif { isect->t = t; isect->u = u; isect->v = v; isect->prim = prim; isect->object = object; isect->type = PRIMITIVE_MOTION_TRIANGLE; return true; } } return false; } /* Special ray intersection routines for local intersections. In that case we * only want to intersect with primitives in the same object, and if case of * multiple hits we pick a single random primitive as the intersection point. * Returns whether traversal should be stopped. */ #ifdef __BVH_LOCAL__ ccl_device_inline bool motion_triangle_intersect_local(KernelGlobals kg, ccl_private LocalIntersection *local_isect, float3 P, float3 dir, float time, int object, int prim, int prim_addr, float tmax, ccl_private uint *lcg_state, int max_hits) { /* Get vertex locations for intersection. */ float3 verts[3]; motion_triangle_vertices(kg, object, prim, time, verts); /* Ray-triangle intersection, unoptimized. */ float t, u, v; if (!ray_triangle_intersect(P, dir, tmax, verts[0], verts[1], verts[2], &u, &v, &t)) { return false; } /* If no actual hit information is requested, just return here. */ if (max_hits == 0) { return true; } int hit; if (lcg_state) { /* Record up to max_hits intersections. */ for (int i = min(max_hits, local_isect->num_hits) - 1; i >= 0; --i) { if (local_isect->hits[i].t == t) { return false; } } local_isect->num_hits++; if (local_isect->num_hits <= max_hits) { hit = local_isect->num_hits - 1; } else { /* Reservoir sampling: if we are at the maximum number of * hits, randomly replace element or skip it. */ hit = lcg_step_uint(lcg_state) % local_isect->num_hits; if (hit >= max_hits) return false; } } else { /* Record closest intersection only. */ if (local_isect->num_hits && t > local_isect->hits[0].t) { return false; } hit = 0; local_isect->num_hits = 1; } /* Record intersection. */ ccl_private Intersection *isect = &local_isect->hits[hit]; isect->t = t; isect->u = u; isect->v = v; isect->prim = prim; isect->object = object; isect->type = PRIMITIVE_MOTION_TRIANGLE; /* Record geometric normal. */ local_isect->Ng[hit] = normalize(cross(verts[1] - verts[0], verts[2] - verts[0])); return false; } #endif /* __BVH_LOCAL__ */ CCL_NAMESPACE_END