/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation * Modifications Copyright 2011, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN /* * "Persistent while-while kernel" used in: * * "Understanding the Efficiency of Ray Traversal on GPUs", * Timo Aila and Samuli Laine, * Proc. High-Performance Graphics 2009 */ /* bottom-most stack entry, indicating the end of traversal */ #define ENTRYPOINT_SENTINEL 0x76543210 /* 64 object BVH + 64 mesh BVH + 64 object node splitting */ #define BVH_STACK_SIZE 192 #define BVH_NODE_SIZE 4 #define TRI_NODE_SIZE 3 /* silly workaround for float extended precision that happens when compiling * without sse support on x86, it results in different results for float ops * that you would otherwise expect to compare correctly */ #if !defined(__i386__) || defined(__SSE__) #define NO_EXTENDED_PRECISION #else #define NO_EXTENDED_PRECISION volatile #endif __device_inline float3 bvh_inverse_direction(float3 dir) { /* avoid divide by zero (ooeps = exp2f(-80.0f)) */ float ooeps = 0.00000000000000000000000082718061255302767487140869206996285356581211090087890625f; float3 idir; idir.x = 1.0f/((fabsf(dir.x) > ooeps)? dir.x: copysignf(ooeps, dir.x)); idir.y = 1.0f/((fabsf(dir.y) > ooeps)? dir.y: copysignf(ooeps, dir.y)); idir.z = 1.0f/((fabsf(dir.z) > ooeps)? dir.z: copysignf(ooeps, dir.z)); return idir; } __device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax) { Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); *P = transform_point(&tfm, ray->P); float3 dir = transform_direction(&tfm, ray->D); float len; dir = normalize_len(dir, &len); *idir = bvh_inverse_direction(dir); if(*t != FLT_MAX) *t *= len; } __device_inline void bvh_instance_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax) { if(*t != FLT_MAX) { Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); *t *= len(transform_direction(&tfm, 1.0f/(*idir))); } *P = ray->P; *idir = bvh_inverse_direction(ray->D); } #ifdef __OBJECT_MOTION__ __device_inline void bvh_instance_motion_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, Transform *tfm, const float tmax) { Transform itfm; *tfm = object_fetch_transform_motion_test(kg, object, ray->time, &itfm); *P = transform_point(&itfm, ray->P); float3 dir = transform_direction(&itfm, ray->D); float len; dir = normalize_len(dir, &len); *idir = bvh_inverse_direction(dir); if(*t != FLT_MAX) *t *= len; } __device_inline void bvh_instance_motion_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, Transform *tfm, const float tmax) { if(*t != FLT_MAX) *t *= len(transform_direction(tfm, 1.0f/(*idir))); *P = ray->P; *idir = bvh_inverse_direction(ray->D); } #endif /* intersect two bounding boxes */ __device_inline void bvh_node_intersect(KernelGlobals *kg, bool *traverseChild0, bool *traverseChild1, bool *closestChild1, int *nodeAddr0, int *nodeAddr1, float3 P, float3 idir, float t, uint visibility, int nodeAddr) { /* fetch node data */ float4 n0xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0); float4 n1xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1); float4 nz = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2); float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3); /* intersect ray against child nodes */ float3 ood = P * idir; float c0lox = n0xy.x * idir.x - ood.x; float c0hix = n0xy.y * idir.x - ood.x; float c0loy = n0xy.z * idir.y - ood.y; float c0hiy = n0xy.w * idir.y - ood.y; float c0loz = nz.x * idir.z - ood.z; float c0hiz = nz.y * idir.z - ood.z; NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f); NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t); float c1loz = nz.z * idir.z - ood.z; float c1hiz = nz.w * idir.z - ood.z; float c1lox = n1xy.x * idir.x - ood.x; float c1hix = n1xy.y * idir.x - ood.x; float c1loy = n1xy.z * idir.y - ood.y; float c1hiy = n1xy.w * idir.y - ood.y; NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f); NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t); /* decide which nodes to traverse next */ #ifdef __VISIBILITY_FLAG__ /* this visibility test gives a 5% performance hit, how to solve? */ *traverseChild0 = (c0max >= c0min) && (__float_as_int(cnodes.z) & visibility); *traverseChild1 = (c1max >= c1min) && (__float_as_int(cnodes.w) & visibility); #else *traverseChild0 = (c0max >= c0min); *traverseChild1 = (c1max >= c1min); #endif *nodeAddr0 = __float_as_int(cnodes.x); *nodeAddr1 = __float_as_int(cnodes.y); *closestChild1 = (c1min < c0min); } /* Sven Woop's algorithm */ __device_inline void bvh_triangle_intersect(KernelGlobals *kg, Intersection *isect, float3 P, float3 idir, uint visibility, int object, int triAddr) { /* compute and check intersection t-value */ float4 v00 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+0); float4 v11 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+1); float3 dir = 1.0f/idir; float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z; float invDz = 1.0f/(dir.x*v00.x + dir.y*v00.y + dir.z*v00.z); float t = Oz * invDz; if(t > 0.0f && t < isect->t) { /* compute and check barycentric u */ float Ox = v11.w + P.x*v11.x + P.y*v11.y + P.z*v11.z; float Dx = dir.x*v11.x + dir.y*v11.y + dir.z*v11.z; float u = Ox + t*Dx; if(u >= 0.0f) { /* compute and check barycentric v */ float4 v22 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+2); float Oy = v22.w + P.x*v22.x + P.y*v22.y + P.z*v22.z; float Dy = dir.x*v22.x + dir.y*v22.y + dir.z*v22.z; float v = Oy + t*Dy; if(v >= 0.0f && u + v <= 1.0f) { #ifdef __VISIBILITY_FLAG__ /* visibility flag test. we do it here under the assumption * that most triangles are culled by node flags */ if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility) #endif { /* record intersection */ isect->prim = triAddr; isect->object = object; isect->u = u; isect->v = v; isect->t = t; } } } } } __device_inline bool bvh_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect) { /* traversal stack in CUDA thread-local memory */ int traversalStack[BVH_STACK_SIZE]; traversalStack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* ray parameters in registers */ const float tmax = ray->t; float3 P = ray->P; float3 idir = bvh_inverse_direction(ray->D); int object = ~0; isect->t = tmax; isect->object = ~0; isect->prim = ~0; isect->u = 0.0f; isect->v = 0.0f; /* traversal loop */ do { do { /* traverse internal nodes */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { bool traverseChild0, traverseChild1, closestChild1; int nodeAddrChild1; bvh_node_intersect(kg, &traverseChild0, &traverseChild1, &closestChild1, &nodeAddr, &nodeAddrChild1, P, idir, isect->t, visibility, nodeAddr); if(traverseChild0 != traverseChild1) { /* one child was intersected */ if(traverseChild1) { nodeAddr = nodeAddrChild1; } } else { if(!traverseChild0) { /* neither child was intersected */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } else { /* both children were intersected, push the farther one */ if(closestChild1) { int tmp = nodeAddr; nodeAddr = nodeAddrChild1; nodeAddrChild1 = tmp; } ++stackPtr; traversalStack[stackPtr] = nodeAddrChild1; } } } /* if node is leaf, fetch triangle list */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1)); int primAddr = __float_as_int(leaf.x); #ifdef __INSTANCING__ if(primAddr >= 0) { #endif int primAddr2 = __float_as_int(leaf.y); /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; /* triangle intersection */ while(primAddr < primAddr2) { /* intersect ray against triangle */ bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr); /* shadow ray early termination */ if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0) return true; primAddr++; } #ifdef __INSTANCING__ } else { /* instance push */ object = kernel_tex_fetch(__prim_object, -primAddr-1); bvh_instance_push(kg, object, ray, &P, &idir, &isect->t, tmax); ++stackPtr; traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } #endif } } while(nodeAddr != ENTRYPOINT_SENTINEL); #ifdef __INSTANCING__ if(stackPtr >= 0) { kernel_assert(object != ~0); /* instance pop */ bvh_instance_pop(kg, object, ray, &P, &idir, &isect->t, tmax); object = ~0; nodeAddr = traversalStack[stackPtr]; --stackPtr; } #endif } while(nodeAddr != ENTRYPOINT_SENTINEL); return (isect->prim != ~0); } #ifdef __OBJECT_MOTION__ __device_inline bool bvh_intersect_motion(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect) { /* traversal stack in CUDA thread-local memory */ int traversalStack[BVH_STACK_SIZE]; traversalStack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* ray parameters in registers */ const float tmax = ray->t; float3 P = ray->P; float3 idir = bvh_inverse_direction(ray->D); int object = ~0; Transform ob_tfm; isect->t = tmax; isect->object = ~0; isect->prim = ~0; isect->u = 0.0f; isect->v = 0.0f; /* traversal loop */ do { do { /* traverse internal nodes */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { bool traverseChild0, traverseChild1, closestChild1; int nodeAddrChild1; bvh_node_intersect(kg, &traverseChild0, &traverseChild1, &closestChild1, &nodeAddr, &nodeAddrChild1, P, idir, isect->t, visibility, nodeAddr); if(traverseChild0 != traverseChild1) { /* one child was intersected */ if(traverseChild1) { nodeAddr = nodeAddrChild1; } } else { if(!traverseChild0) { /* neither child was intersected */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } else { /* both children were intersected, push the farther one */ if(closestChild1) { int tmp = nodeAddr; nodeAddr = nodeAddrChild1; nodeAddrChild1 = tmp; } ++stackPtr; traversalStack[stackPtr] = nodeAddrChild1; } } } /* if node is leaf, fetch triangle list */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1)); int primAddr = __float_as_int(leaf.x); if(primAddr >= 0) { int primAddr2 = __float_as_int(leaf.y); /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; /* triangle intersection */ while(primAddr < primAddr2) { /* intersect ray against triangle */ bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr); /* shadow ray early termination */ if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0) return true; primAddr++; } } else { /* instance push */ object = kernel_tex_fetch(__prim_object, -primAddr-1); bvh_instance_motion_push(kg, object, ray, &P, &idir, &isect->t, &ob_tfm, tmax); ++stackPtr; traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } } } while(nodeAddr != ENTRYPOINT_SENTINEL); if(stackPtr >= 0) { kernel_assert(object != ~0); /* instance pop */ bvh_instance_motion_pop(kg, object, ray, &P, &idir, &isect->t, &ob_tfm, tmax); object = ~0; nodeAddr = traversalStack[stackPtr]; --stackPtr; } } while(nodeAddr != ENTRYPOINT_SENTINEL); return (isect->prim != ~0); } #endif __device_inline bool scene_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect) { #ifdef __OBJECT_MOTION__ if(kernel_data.bvh.have_motion) return bvh_intersect_motion(kg, ray, visibility, isect); else return bvh_intersect(kg, ray, visibility, isect); #else return bvh_intersect(kg, ray, visibility, isect); #endif } __device_inline float3 ray_offset(float3 P, float3 Ng) { #ifdef __INTERSECTION_REFINE__ const float epsilon_f = 1e-5f; const int epsilon_i = 32; float3 res; /* x component */ if(fabsf(P.x) < epsilon_f) { res.x = P.x + Ng.x*epsilon_f; } else { uint ix = __float_as_uint(P.x); ix += ((ix ^ __float_as_uint(Ng.x)) >> 31)? -epsilon_i: epsilon_i; res.x = __uint_as_float(ix); } /* y component */ if(fabsf(P.y) < epsilon_f) { res.y = P.y + Ng.y*epsilon_f; } else { uint iy = __float_as_uint(P.y); iy += ((iy ^ __float_as_uint(Ng.y)) >> 31)? -epsilon_i: epsilon_i; res.y = __uint_as_float(iy); } /* z component */ if(fabsf(P.z) < epsilon_f) { res.z = P.z + Ng.z*epsilon_f; } else { uint iz = __float_as_uint(P.z); iz += ((iz ^ __float_as_uint(Ng.z)) >> 31)? -epsilon_i: epsilon_i; res.z = __uint_as_float(iz); } return res; #else const float epsilon_f = 1e-4f; return P + epsilon_f*Ng; #endif } __device_inline float3 bvh_triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray) { float3 P = ray->P; float3 D = ray->D; float t = isect->t; #ifdef __INTERSECTION_REFINE__ if(isect->object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_itfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM); #endif P = transform_point(&tfm, P); D = transform_direction(&tfm, D*t); D = normalize_len(D, &t); } P = P + D*t; float4 v00 = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+0); float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z; float invDz = 1.0f/(D.x*v00.x + D.y*v00.y + D.z*v00.z); float rt = Oz * invDz; P = P + D*rt; if(isect->object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_tfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM); #endif P = transform_point(&tfm, P); } return P; #else return P + D*t; #endif } CCL_NAMESPACE_END