/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ CCL_NAMESPACE_BEGIN #ifdef __HAIR__ /* curve attributes */ __device float curve_attribute_float(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float *dx, float *dy) { if(elem == ATTR_ELEMENT_CURVE) { #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = 0.0f; if(dy) *dy = 0.0f; #endif return kernel_tex_fetch(__attributes_float, offset + sd->prim); } else if(elem == ATTR_ELEMENT_CURVE_KEY) { float4 curvedata = kernel_tex_fetch(__curves, sd->prim); int k0 = __float_as_int(curvedata.x) + sd->segment; int k1 = k0 + 1; float f0 = kernel_tex_fetch(__attributes_float, offset + k0); float f1 = kernel_tex_fetch(__attributes_float, offset + k1); #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*(f1 - f0); if(dy) *dy = 0.0f; #endif return (1.0f - sd->u)*f0 + sd->u*f1; } else { #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = 0.0f; if(dy) *dy = 0.0f; #endif return 0.0f; } } __device float3 curve_attribute_float3(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float3 *dx, float3 *dy) { if(elem == ATTR_ELEMENT_CURVE) { /* idea: we can't derive any useful differentials here, but for tiled * mipmap image caching it would be useful to avoid reading the highest * detail level always. maybe a derivative based on the hair density * could be computed somehow? */ #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); #endif return float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + sd->prim)); } else if(elem == ATTR_ELEMENT_CURVE_KEY) { float4 curvedata = kernel_tex_fetch(__curves, sd->prim); int k0 = __float_as_int(curvedata.x) + sd->segment; int k1 = k0 + 1; float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + k0)); float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + k1)); #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = sd->du.dx*(f1 - f0); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); #endif return (1.0f - sd->u)*f0 + sd->u*f1; } else { #ifdef __RAY_DIFFERENTIALS__ if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f); if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f); #endif return make_float3(0.0f, 0.0f, 0.0f); } } /* hair info node functions */ __device float curve_thickness(KernelGlobals *kg, ShaderData *sd) { float r = 0.0f; if(sd->segment != ~0) { float4 curvedata = kernel_tex_fetch(__curves, sd->prim); int k0 = __float_as_int(curvedata.x) + sd->segment; int k1 = k0 + 1; float4 P1 = kernel_tex_fetch(__curve_keys, k0); float4 P2 = kernel_tex_fetch(__curve_keys, k1); r = (P2.w - P1.w) * sd->u + P1.w; } return r*2.0f; } __device float3 curve_tangent_normal(KernelGlobals *kg, ShaderData *sd) { float3 tgN = make_float3(0.0f,0.0f,0.0f); if(sd->segment != ~0) { float normalmix = kernel_data.curve.normalmix; tgN = -(-sd->I - sd->dPdu * (dot(sd->dPdu,-sd->I) * normalmix / len_squared(sd->dPdu))); tgN = normalize(tgN); /* need to find suitable scaled gd for corrected normal */ #if 0 if (kernel_data.curve.use_tangent_normal_correction) tgN = normalize(tgN - gd * sd->dPdu); #endif } return tgN; } #endif CCL_NAMESPACE_END