/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(__SPLIT_KERNEL__) || defined(__KERNEL_CUDA__) #define __ATOMIC_PASS_WRITE__ #endif #include "kernel/kernel_id_passes.h" CCL_NAMESPACE_BEGIN ccl_device_inline void kernel_write_pass_float(ccl_global float *buffer, float value) { ccl_global float *buf = buffer; #ifdef __ATOMIC_PASS_WRITE__ atomic_add_and_fetch_float(buf, value); #else *buf += value; #endif } ccl_device_inline void kernel_write_pass_float3(ccl_global float *buffer, float3 value) { #ifdef __ATOMIC_PASS_WRITE__ ccl_global float *buf_x = buffer + 0; ccl_global float *buf_y = buffer + 1; ccl_global float *buf_z = buffer + 2; atomic_add_and_fetch_float(buf_x, value.x); atomic_add_and_fetch_float(buf_y, value.y); atomic_add_and_fetch_float(buf_z, value.z); #else ccl_global float3 *buf = (ccl_global float3*)buffer; *buf += value; #endif } ccl_device_inline void kernel_write_pass_float4(ccl_global float *buffer, float4 value) { #ifdef __ATOMIC_PASS_WRITE__ ccl_global float *buf_x = buffer + 0; ccl_global float *buf_y = buffer + 1; ccl_global float *buf_z = buffer + 2; ccl_global float *buf_w = buffer + 3; atomic_add_and_fetch_float(buf_x, value.x); atomic_add_and_fetch_float(buf_y, value.y); atomic_add_and_fetch_float(buf_z, value.z); atomic_add_and_fetch_float(buf_w, value.w); #else ccl_global float4 *buf = (ccl_global float4*)buffer; *buf += value; #endif } #ifdef __DENOISING_FEATURES__ ccl_device_inline void kernel_write_pass_float_variance(ccl_global float *buffer, float value) { kernel_write_pass_float(buffer, value); /* The online one-pass variance update that's used for the megakernel can't easily be implemented * with atomics, so for the split kernel the E[x^2] - 1/N * (E[x])^2 fallback is used. */ kernel_write_pass_float(buffer+1, value*value); } # ifdef __ATOMIC_PASS_WRITE__ # define kernel_write_pass_float3_unaligned kernel_write_pass_float3 # else ccl_device_inline void kernel_write_pass_float3_unaligned(ccl_global float *buffer, float3 value) { buffer[0] += value.x; buffer[1] += value.y; buffer[2] += value.z; } # endif ccl_device_inline void kernel_write_pass_float3_variance(ccl_global float *buffer, float3 value) { kernel_write_pass_float3_unaligned(buffer, value); kernel_write_pass_float3_unaligned(buffer+3, value*value); } ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg, ccl_global float *buffer, int sample, float path_total, float path_total_shaded) { if(kernel_data.film.pass_denoising_data == 0) return; buffer += (sample & 1)? DENOISING_PASS_SHADOW_B : DENOISING_PASS_SHADOW_A; path_total = ensure_finite(path_total); path_total_shaded = ensure_finite(path_total_shaded); kernel_write_pass_float(buffer, path_total); kernel_write_pass_float(buffer+1, path_total_shaded); float value = path_total_shaded / max(path_total, 1e-7f); kernel_write_pass_float(buffer+2, value*value); } #endif /* __DENOISING_FEATURES__ */ ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state, PathRadiance *L) { #ifdef __DENOISING_FEATURES__ if(state->denoising_feature_weight == 0.0f) { return; } L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length); /* Skip implicitly transparent surfaces. */ if(sd->flag & SD_HAS_ONLY_VOLUME) { return; } float3 normal = make_float3(0.0f, 0.0f, 0.0f); float3 albedo = make_float3(0.0f, 0.0f, 0.0f); float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f; for(int i = 0; i < sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) continue; /* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */ normal += sc->N * sc->sample_weight; sum_weight += sc->sample_weight; if(bsdf_get_specular_roughness_squared(sc) > sqr(0.075f)) { albedo += sc->weight; sum_nonspecular_weight += sc->sample_weight; } } /* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */ if((sum_weight == 0.0f) || (sum_nonspecular_weight*4.0f > sum_weight)) { if(sum_weight != 0.0f) { normal /= sum_weight; } L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal); L->denoising_albedo += ensure_finite3(state->denoising_feature_weight * albedo); state->denoising_feature_weight = 0.0f; } #else (void) kg; (void) sd; (void) state; (void) L; #endif /* __DENOISING_FEATURES__ */ } #ifdef __KERNEL_DEBUG__ ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L) { int flag = kernel_data.film.pass_flag; if(flag & PASSMASK(BVH_TRAVERSED_NODES)) { kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_nodes, L->debug_data.num_bvh_traversed_nodes); } if(flag & PASSMASK(BVH_TRAVERSED_INSTANCES)) { kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances, L->debug_data.num_bvh_traversed_instances); } if(flag & PASSMASK(BVH_INTERSECTIONS)) { kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_intersections, L->debug_data.num_bvh_intersections); } if(flag & PASSMASK(RAY_BOUNCES)) { kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces, L->debug_data.num_ray_bounces); } } #endif /* __KERNEL_DEBUG__ */ #ifdef __KERNEL_CPU__ #define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) kernel_write_id_pass_cpu(buffer, depth * 2, id, matte_weight, kg->coverage_##name) ccl_device_inline size_t kernel_write_id_pass_cpu(float *buffer, size_t depth, float id, float matte_weight, CoverageMap *map) { if(map) { (*map)[id] += matte_weight; return 0; } #else /* __KERNEL_CPU__ */ #define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) kernel_write_id_slots_gpu(buffer, depth * 2, id, matte_weight) ccl_device_inline size_t kernel_write_id_slots_gpu(ccl_global float *buffer, size_t depth, float id, float matte_weight) { #endif /* __KERNEL_CPU__ */ kernel_write_id_slots(buffer, depth, id, matte_weight); return depth * 2; } ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L, ShaderData *sd, ccl_addr_space PathState *state, float3 throughput) { #ifdef __PASSES__ int path_flag = state->flag; if(!(path_flag & PATH_RAY_CAMERA)) return; int flag = kernel_data.film.pass_flag; int light_flag = kernel_data.film.light_pass_flag; if(!((flag | light_flag) & PASS_ANY)) return; if(!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) { if(!(sd->flag & SD_TRANSPARENT) || kernel_data.film.pass_alpha_threshold == 0.0f || average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold) { if(state->sample == 0) { if(flag & PASSMASK(DEPTH)) { float depth = camera_distance(kg, sd->P); kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth); } if(flag & PASSMASK(OBJECT_ID)) { float id = object_pass_id(kg, sd->object); kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id); } if(flag & PASSMASK(MATERIAL_ID)) { float id = shader_pass_id(kg, sd); kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id); } } if(flag & PASSMASK(NORMAL)) { float3 normal = shader_bsdf_average_normal(kg, sd); kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal); } if(flag & PASSMASK(UV)) { float3 uv = primitive_uv(kg, sd); kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv); } if(flag & PASSMASK(MOTION)) { float4 speed = primitive_motion_vector(kg, sd); kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed); kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f); } state->flag |= PATH_RAY_SINGLE_PASS_DONE; } } if(kernel_data.film.cryptomatte_passes) { const float matte_weight = average(throughput) * (1.0f - average(shader_bsdf_transparency(kg, sd))); if(matte_weight > 0.0f) { ccl_global float *cryptomatte_buffer = buffer + kernel_data.film.pass_cryptomatte; if(kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) { float id = object_cryptomatte_id(kg, sd->object); cryptomatte_buffer += WRITE_ID_SLOT(cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, object); } if(kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) { float id = shader_cryptomatte_id(kg, sd->shader); cryptomatte_buffer += WRITE_ID_SLOT(cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, material); } if(kernel_data.film.cryptomatte_passes & CRYPT_ASSET) { float id = object_cryptomatte_asset_id(kg, sd->object); cryptomatte_buffer += WRITE_ID_SLOT(cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, asset); } } } if(light_flag & PASSMASK_COMPONENT(DIFFUSE)) L->color_diffuse += shader_bsdf_diffuse(kg, sd)*throughput; if(light_flag & PASSMASK_COMPONENT(GLOSSY)) L->color_glossy += shader_bsdf_glossy(kg, sd)*throughput; if(light_flag & PASSMASK_COMPONENT(TRANSMISSION)) L->color_transmission += shader_bsdf_transmission(kg, sd)*throughput; if(light_flag & PASSMASK_COMPONENT(SUBSURFACE)) L->color_subsurface += shader_bsdf_subsurface(kg, sd)*throughput; if(light_flag & PASSMASK(MIST)) { /* bring depth into 0..1 range */ float mist_start = kernel_data.film.mist_start; float mist_inv_depth = kernel_data.film.mist_inv_depth; float depth = camera_distance(kg, sd->P); float mist = saturate((depth - mist_start)*mist_inv_depth); /* falloff */ float mist_falloff = kernel_data.film.mist_falloff; if(mist_falloff == 1.0f) ; else if(mist_falloff == 2.0f) mist = mist*mist; else if(mist_falloff == 0.5f) mist = sqrtf(mist); else mist = powf(mist, mist_falloff); /* modulate by transparency */ float3 alpha = shader_bsdf_alpha(kg, sd); L->mist += (1.0f - mist)*average(throughput*alpha); } #endif } ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L) { #ifdef __PASSES__ int light_flag = kernel_data.film.light_pass_flag; if(!kernel_data.film.use_light_pass) return; if(light_flag & PASSMASK(DIFFUSE_INDIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, L->indirect_diffuse); if(light_flag & PASSMASK(GLOSSY_INDIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, L->indirect_glossy); if(light_flag & PASSMASK(TRANSMISSION_INDIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect, L->indirect_transmission); if(light_flag & PASSMASK(SUBSURFACE_INDIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect, L->indirect_subsurface); if(light_flag & PASSMASK(VOLUME_INDIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_indirect, L->indirect_scatter); if(light_flag & PASSMASK(DIFFUSE_DIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, L->direct_diffuse); if(light_flag & PASSMASK(GLOSSY_DIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, L->direct_glossy); if(light_flag & PASSMASK(TRANSMISSION_DIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct, L->direct_transmission); if(light_flag & PASSMASK(SUBSURFACE_DIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct, L->direct_subsurface); if(light_flag & PASSMASK(VOLUME_DIRECT)) kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_direct, L->direct_scatter); if(light_flag & PASSMASK(EMISSION)) kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, L->emission); if(light_flag & PASSMASK(BACKGROUND)) kernel_write_pass_float3(buffer + kernel_data.film.pass_background, L->background); if(light_flag & PASSMASK(AO)) kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, L->ao); if(light_flag & PASSMASK(DIFFUSE_COLOR)) kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, L->color_diffuse); if(light_flag & PASSMASK(GLOSSY_COLOR)) kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, L->color_glossy); if(light_flag & PASSMASK(TRANSMISSION_COLOR)) kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color, L->color_transmission); if(light_flag & PASSMASK(SUBSURFACE_COLOR)) kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, L->color_subsurface); if(light_flag & PASSMASK(SHADOW)) { float4 shadow = L->shadow; shadow.w = kernel_data.film.pass_shadow_scale; kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, shadow); } if(light_flag & PASSMASK(MIST)) kernel_write_pass_float(buffer + kernel_data.film.pass_mist, 1.0f - L->mist); #endif } ccl_device_inline void kernel_write_result(KernelGlobals *kg, ccl_global float *buffer, int sample, PathRadiance *L) { PROFILING_INIT(kg, PROFILING_WRITE_RESULT); PROFILING_OBJECT(PRIM_NONE); float alpha; float3 L_sum = path_radiance_clamp_and_sum(kg, L, &alpha); kernel_write_pass_float4(buffer, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha)); kernel_write_light_passes(kg, buffer, L); #ifdef __DENOISING_FEATURES__ if(kernel_data.film.pass_denoising_data) { # ifdef __SHADOW_TRICKS__ kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, average(L->path_total), average(L->path_total_shaded)); # else kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f); # endif if(kernel_data.film.pass_denoising_clean) { float3 noisy, clean; path_radiance_split_denoising(kg, L, &noisy, &clean); kernel_write_pass_float3_variance( buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR, noisy); kernel_write_pass_float3_unaligned( buffer + kernel_data.film.pass_denoising_clean, clean); } else { kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR, ensure_finite3(L_sum)); } kernel_write_pass_float3_variance( buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_NORMAL, L->denoising_normal); kernel_write_pass_float3_variance( buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_ALBEDO, L->denoising_albedo); kernel_write_pass_float_variance( buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH, L->denoising_depth); } #endif /* __DENOISING_FEATURES__ */ #ifdef __KERNEL_DEBUG__ kernel_write_debug_passes(kg, buffer, L); #endif } CCL_NAMESPACE_END