/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "kernel_differential.h" #include "kernel_montecarlo.h" #include "kernel_triangle.h" #include "kernel_object.h" #ifdef __QBVH__ #include "kernel_qbvh.h" #else #include "kernel_bvh.h" #endif #include "kernel_camera.h" #include "kernel_shader.h" #include "kernel_light.h" #include "kernel_emission.h" #include "kernel_random.h" CCL_NAMESPACE_BEGIN #ifdef __MODIFY_TP__ __device float3 path_terminate_modified_throughput(KernelGlobals *kg, __global float3 *buffer, int x, int y, int pass) { /* modify throughput to influence path termination probability, to avoid darker regions receiving fewer samples than lighter regions. also RGB are weighted differently. proper validation still remains to be done. */ const float3 weights = make_float3(1.0f, 1.33f, 0.66f); const float3 one = make_float3(1.0f, 1.0f, 1.0f); const int minpass = 5; const float minL = 0.1f; if(pass >= minpass) { float3 L = buffer[x + y*kernel_data.cam.width]; float3 Lmin = make_float3(minL, minL, minL); float correct = (float)(pass+1)/(float)pass; L = film_map(L*correct, pass); return weights/clamp(L, Lmin, one); } return weights; } #endif typedef struct PathState { uint flag; int bounce; int diffuse_bounce; int glossy_bounce; int transmission_bounce; int transparent_bounce; } PathState; __device_inline void path_state_init(PathState *state) { state->flag = PATH_RAY_CAMERA|PATH_RAY_SINGULAR; state->bounce = 0; state->diffuse_bounce = 0; state->glossy_bounce = 0; state->transmission_bounce = 0; state->transparent_bounce = 0; } __device_inline void path_state_next(PathState *state, int label) { /* ray through transparent keeps same flags from previous ray and is not counted as a regular bounce, transparent has separate max */ if(label & LABEL_TRANSPARENT) { state->flag |= PATH_RAY_TRANSPARENT; state->transparent_bounce++; return; } state->bounce++; /* reflection/transmission */ if(label & LABEL_REFLECT) { state->flag |= PATH_RAY_REFLECT; state->flag &= ~(PATH_RAY_TRANSMIT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT); if(label & LABEL_DIFFUSE) state->diffuse_bounce++; else state->glossy_bounce++; } else { kernel_assert(label & LABEL_TRANSMIT); state->flag |= PATH_RAY_TRANSMIT; state->flag &= ~(PATH_RAY_REFLECT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT); state->transmission_bounce++; } /* diffuse/glossy/singular */ if(label & LABEL_DIFFUSE) { state->flag |= PATH_RAY_DIFFUSE; state->flag &= ~(PATH_RAY_GLOSSY|PATH_RAY_SINGULAR); } else if(label & LABEL_GLOSSY) { state->flag |= PATH_RAY_GLOSSY; state->flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_SINGULAR); } else { kernel_assert(label & LABEL_SINGULAR); state->flag |= PATH_RAY_GLOSSY|PATH_RAY_SINGULAR; state->flag &= ~PATH_RAY_DIFFUSE; } } __device_inline uint path_state_ray_visibility(PathState *state) { uint flag = state->flag; /* for visibility, diffuse/glossy are for reflection only */ if(flag & PATH_RAY_TRANSMIT) flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY); return flag; } __device_inline float path_state_terminate_probability(KernelGlobals *kg, PathState *state, const float3 throughput) { if(state->flag & PATH_RAY_TRANSPARENT) { /* transparent rays treated separately */ if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce) return 0.0f; else if(state->transparent_bounce <= kernel_data.integrator.transparent_min_bounce) return 1.0f; } else { /* other rays */ if((state->bounce >= kernel_data.integrator.max_bounce) || (state->diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) || (state->glossy_bounce >= kernel_data.integrator.max_glossy_bounce) || (state->transmission_bounce >= kernel_data.integrator.max_transmission_bounce)) return 0.0f; else if(state->bounce <= kernel_data.integrator.min_bounce) return 1.0f; } /* probalistic termination */ return average(throughput); } #ifdef __TRANSPARENT_SHADOWS__ __device bool shader_transparent_shadow(KernelGlobals *kg, Intersection *isect) { int prim = kernel_tex_fetch(__prim_index, isect->prim); float4 Ns = kernel_tex_fetch(__tri_normal, prim); int shader = __float_as_int(Ns.w); /* todo: add shader flag to check this */ return true; } #endif __device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, Intersection *isect, float3 *light_L) { if(ray->t == 0.0f) return false; bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW, isect); #ifdef __TRANSPARENT_SHADOWS__ if(result && kernel_data.integrator.transparent_shadows) { /* transparent shadows work in such a way to try to minimize overhead in cases where we don't need them. after a regular shadow ray is cast we check if the hit primitive was potentially transparent, and only in that case start marching. this gives on extra ray cast for the cases were we do want transparency */ if(shader_transparent_shadow(kg, isect)) { /* todo: fix double contribution from indirect for triangle lights */ /* if(kernel_data.integrator.transparent_shadows && (path_flag & PATH_RAY_TRANSPARENT)) */ float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float3 Pend = ray->P + ray->D*ray->t; int bounce = state->transparent_bounce; for(;;) { if(bounce >= kernel_data.integrator.transparent_max_bounce) { return true; } else if(bounce >= kernel_data.integrator.transparent_min_bounce) { /* todo: get random number somewhere for probabilistic terminate */ #if 0 float probability = average(throughput); float terminate = 0.0f; /* todo: get this random number */ if(terminate >= probability) return true; throughput /= probability; #endif } /* todo: fix it so we get first hit */ if(!scene_intersect(kg, ray, PATH_RAY_SHADOW, isect)) { *light_L *= throughput; return false; } if(!shader_transparent_shadow(kg, isect)) return true; ShaderData sd; shader_setup_from_ray(kg, &sd, isect, ray); shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW); /* todo: state flag? */ throughput *= shader_bsdf_transparency(kg, &sd); ray->P = ray_offset(sd.P, -sd.Ng); ray->t = len(Pend - ray->P); bounce++; } return true; } } #endif return result; } __device float4 kernel_path_integrate(KernelGlobals *kg, RNG *rng, int pass, Ray ray, float3 throughput) { /* initialize */ float3 L = make_float3(0.0f, 0.0f, 0.0f); float Ltransparent = 0.0f; #ifdef __EMISSION__ float ray_pdf = 0.0f; #endif PathState state; int rng_offset = PRNG_BASE_NUM; path_state_init(&state); /* path iteration */ for(;; rng_offset += PRNG_BOUNCE_NUM) { /* intersect scene */ Intersection isect; uint visibility = path_state_ray_visibility(&state); if(!scene_intersect(kg, &ray, visibility, &isect)) { /* eval background shader if nothing hit */ if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) { Ltransparent += average(throughput); } else { #ifdef __BACKGROUND__ ShaderData sd; shader_setup_from_background(kg, &sd, &ray); L += throughput*shader_eval_background(kg, &sd, state.flag); shader_release(kg, &sd); #else L += throughput*make_float3(0.8f, 0.8f, 0.8f); #endif } break; } /* setup shading */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &ray); float rbsdf = path_rng(kg, rng, pass, rng_offset + PRNG_BSDF); shader_eval_surface(kg, &sd, rbsdf, state.flag); #ifdef __HOLDOUT__ if((sd.flag & SD_HOLDOUT) && (state.flag & PATH_RAY_CAMERA)) { float3 holdout_weight = shader_holdout_eval(kg, &sd); if(kernel_data.background.transparent) Ltransparent += average(holdout_weight*throughput); } #endif #ifdef __EMISSION__ /* emission */ if(kernel_data.integrator.use_emission) { if(sd.flag & SD_EMISSION) L += throughput*indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf); } #endif /* path termination. this is a strange place to put the termination, it's mainly due to the mixed in MIS that we use. gives too many unneeded shader evaluations, only need emission if we are going to terminate */ float probability = path_state_terminate_probability(kg, &state, throughput); float terminate = path_rng(kg, rng, pass, rng_offset + PRNG_TERMINATE); if(terminate >= probability) break; throughput /= probability; #ifdef __EMISSION__ if(kernel_data.integrator.use_emission) { /* sample illumination from lights to find path contribution */ if(sd.flag & SD_BSDF_HAS_EVAL) { float light_t = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT); float light_o = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT_F); float light_u = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT_U); float light_v = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT_V); Ray light_ray; float3 light_L; #ifdef __MULTI_LIGHT__ /* index -1 means randomly sample from distribution */ int i = (kernel_data.integrator.num_distribution)? -1: 0; for(; i < kernel_data.integrator.num_all_lights; i++) { #else const int i = -1; #endif if(direct_emission(kg, &sd, i, light_t, light_o, light_u, light_v, &light_ray, &light_L)) { /* trace shadow ray */ if(!shadow_blocked(kg, &state, &light_ray, &isect, &light_L)) L += throughput*light_L; } #ifdef __MULTI_LIGHT__ } #endif } } #endif /* no BSDF? we can stop here */ if(!(sd.flag & SD_BSDF)) break; /* sample BSDF */ float bsdf_pdf; float3 bsdf_eval; float3 bsdf_omega_in; differential3 bsdf_domega_in; float bsdf_u = path_rng(kg, rng, pass, rng_offset + PRNG_BSDF_U); float bsdf_v = path_rng(kg, rng, pass, rng_offset + PRNG_BSDF_V); int label; label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf); shader_release(kg, &sd); if(bsdf_pdf == 0.0f || is_zero(bsdf_eval)) break; /* modify throughput */ throughput *= bsdf_eval/bsdf_pdf; /* set labels */ #ifdef __EMISSION__ ray_pdf = bsdf_pdf; #endif /* update path state */ path_state_next(&state, label); /* setup ray */ ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng); ray.D = bsdf_omega_in; ray.t = FLT_MAX; #ifdef __RAY_DIFFERENTIALS__ ray.dP = sd.dP; ray.dD = bsdf_domega_in; #endif } return make_float4(L.x, L.y, L.z, 1.0f - Ltransparent); } __device void kernel_path_trace(KernelGlobals *kg, __global float4 *buffer, __global uint *rng_state, int pass, int x, int y) { /* initialize random numbers */ RNG rng; float filter_u; float filter_v; path_rng_init(kg, rng_state, pass, &rng, x, y, &filter_u, &filter_v); /* sample camera ray */ Ray ray; float lens_u = path_rng(kg, &rng, pass, PRNG_LENS_U); float lens_v = path_rng(kg, &rng, pass, PRNG_LENS_V); camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, &ray); /* integrate */ #ifdef __MODIFY_TP__ float3 throughput = path_terminate_modified_throughput(kg, buffer, x, y, pass); float4 L = kernel_path_integrate(kg, &rng, pass, ray, throughput)/throughput; #else float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float4 L = kernel_path_integrate(kg, &rng, pass, ray, throughput); #endif /* accumulate result in output buffer */ int index = x + y*kernel_data.cam.width; if(pass == 0) buffer[index] = L; else buffer[index] += L; path_rng_end(kg, rng_state, rng, x, y); } CCL_NAMESPACE_END