/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef __OSL__ #include "osl_shader.h" #endif #include "kernel_random.h" #include "kernel_projection.h" #include "kernel_montecarlo.h" #include "kernel_differential.h" #include "kernel_camera.h" #include "geom/geom.h" #include "kernel_accumulate.h" #include "kernel_shader.h" #include "kernel_light.h" #include "kernel_passes.h" #ifdef __SUBSURFACE__ #include "kernel_subsurface.h" #endif #ifdef __VOLUME__ #include "kernel_volume.h" #endif #include "kernel_path_state.h" #include "kernel_shadow.h" #include "kernel_emission.h" #include "kernel_path_surface.h" #include "kernel_path_volume.h" #ifdef __KERNEL_DEBUG__ #include "kernel_debug.h" #endif CCL_NAMESPACE_BEGIN ccl_device void kernel_path_indirect(KernelGlobals *kg, RNG *rng, Ray ray, float3 throughput, int num_samples, PathState state, PathRadiance *L) { /* path iteration */ for(;;) { /* intersect scene */ Intersection isect; uint visibility = path_state_ray_visibility(kg, &state); bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f); #ifdef __LAMP_MIS__ if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) { /* ray starting from previous non-transparent bounce */ Ray light_ray; light_ray.P = ray.P - state.ray_t*ray.D; state.ray_t += isect.t; light_ray.D = ray.D; light_ray.t = state.ray_t; light_ray.time = ray.time; light_ray.dD = ray.dD; light_ray.dP = ray.dP; /* intersect with lamp */ float3 emission; if(indirect_lamp_emission(kg, &state, &light_ray, &emission)) path_radiance_accum_emission(L, throughput, emission, state.bounce); } #endif #ifdef __VOLUME__ /* volume attenuation, emission, scatter */ if(state.volume_stack[0].shader != SHADER_NONE) { Ray volume_ray = ray; volume_ray.t = (hit)? isect.t: FLT_MAX; bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack); #ifdef __VOLUME_DECOUPLED__ int sampling_method = volume_stack_sampling_method(kg, state.volume_stack); bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, false, sampling_method); if(decoupled) { /* cache steps along volume for repeated sampling */ VolumeSegment volume_segment; ShaderData volume_sd; shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce); kernel_volume_decoupled_record(kg, &state, &volume_ray, &volume_sd, &volume_segment, heterogeneous); volume_segment.sampling_method = sampling_method; /* emission */ if(volume_segment.closure_flag & SD_EMISSION) path_radiance_accum_emission(L, throughput, volume_segment.accum_emission, state.bounce); /* scattering */ VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED; if(volume_segment.closure_flag & SD_SCATTER) { bool all = kernel_data.integrator.sample_all_lights_indirect; /* direct light sampling */ kernel_branched_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, L, all, &volume_ray, &volume_segment); /* indirect sample. if we use distance sampling and take just * one sample for direct and indirect light, we could share * this computation, but makes code a bit complex */ float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE); float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE); result = kernel_volume_decoupled_scatter(kg, &state, &volume_ray, &volume_sd, &throughput, rphase, rscatter, &volume_segment, NULL, true); } /* free cached steps */ kernel_volume_decoupled_free(kg, &volume_segment); if(result == VOLUME_PATH_SCATTERED) { if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, L, &ray)) continue; else break; } else { throughput *= volume_segment.accum_transmittance; } } else #endif { /* integrate along volume segment with distance sampling */ ShaderData volume_sd; VolumeIntegrateResult result = kernel_volume_integrate( kg, &state, &volume_sd, &volume_ray, L, &throughput, rng, heterogeneous); #ifdef __VOLUME_SCATTER__ if(result == VOLUME_PATH_SCATTERED) { /* direct lighting */ kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, L); /* indirect light bounce */ if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, L, &ray)) continue; else break; } #endif } } #endif if(!hit) { #ifdef __BACKGROUND__ /* sample background shader */ float3 L_background = indirect_background(kg, &state, &ray); path_radiance_accum_background(L, throughput, L_background, state.bounce); #endif break; } /* setup shading */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce); float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF); shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_INDIRECT); #ifdef __BRANCHED_PATH__ shader_merge_closures(&sd); #endif /* blurring of bsdf after bounces, for rays that have a small likelihood * of following this particular path (diffuse, rough glossy) */ if(kernel_data.integrator.filter_glossy != FLT_MAX) { float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf; if(blur_pdf < 1.0f) { float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f; shader_bsdf_blur(kg, &sd, blur_roughness); } } #ifdef __EMISSION__ /* emission */ if(sd.flag & SD_EMISSION) { float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf); path_radiance_accum_emission(L, throughput, emission, state.bounce); } #endif /* path termination. this is a strange place to put the termination, it's * mainly due to the mixed in MIS that we use. gives too many unneeded * shader evaluations, only need emission if we are going to terminate */ float probability = path_state_terminate_probability(kg, &state, throughput*num_samples); if(probability == 0.0f) { break; } else if(probability != 1.0f) { float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE); if(terminate >= probability) break; throughput /= probability; } #ifdef __AO__ /* ambient occlusion */ if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) { float bsdf_u, bsdf_v; path_state_rng_2D(kg, rng, &state, PRNG_BSDF_U, &bsdf_u, &bsdf_v); float ao_factor = kernel_data.background.ao_factor; float3 ao_N; float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N); float3 ao_D; float ao_pdf; float3 ao_alpha = make_float3(0.0f, 0.0f, 0.0f); sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf); if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) { Ray light_ray; float3 ao_shadow; light_ray.P = ray_offset(sd.P, sd.Ng); light_ray.D = ao_D; light_ray.t = kernel_data.background.ao_distance; #ifdef __OBJECT_MOTION__ light_ray.time = sd.time; #endif light_ray.dP = sd.dP; light_ray.dD = differential3_zero(); if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow)) path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state.bounce); } } #endif #ifdef __SUBSURFACE__ /* bssrdf scatter to a different location on the same object, replacing * the closures with a diffuse BSDF */ if(sd.flag & SD_BSSRDF) { float bssrdf_probability; ShaderClosure *sc = subsurface_scatter_pick_closure(kg, &sd, &bssrdf_probability); /* modify throughput for picking bssrdf or bsdf */ throughput *= bssrdf_probability; /* do bssrdf scatter step if we picked a bssrdf closure */ if(sc) { uint lcg_state = lcg_state_init(rng, &state, 0x68bc21eb); float bssrdf_u, bssrdf_v; path_state_rng_2D(kg, rng, &state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v); subsurface_scatter_step(kg, &sd, state.flag, sc, &lcg_state, bssrdf_u, bssrdf_v, false); state.flag |= PATH_RAY_BSSRDF_ANCESTOR; } } #endif #if defined(__EMISSION__) && defined(__BRANCHED_PATH__) if(kernel_data.integrator.use_direct_light) { bool all = kernel_data.integrator.sample_all_lights_indirect; kernel_branched_path_surface_connect_light(kg, rng, &sd, &state, throughput, 1.0f, L, all); } #endif if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, L, &ray)) break; } } ccl_device void kernel_path_ao(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, float3 throughput) { /* todo: solve correlation */ float bsdf_u, bsdf_v; path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v); float ao_factor = kernel_data.background.ao_factor; float3 ao_N; float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N); float3 ao_D; float ao_pdf; float3 ao_alpha = shader_bsdf_alpha(kg, sd); sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf); if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) { Ray light_ray; float3 ao_shadow; light_ray.P = ray_offset(sd->P, sd->Ng); light_ray.D = ao_D; light_ray.t = kernel_data.background.ao_distance; #ifdef __OBJECT_MOTION__ light_ray.time = sd->time; #endif light_ray.dP = sd->dP; light_ray.dD = differential3_zero(); if(!shadow_blocked(kg, state, &light_ray, &ao_shadow)) path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state->bounce); } } ccl_device void kernel_branched_path_ao(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, float3 throughput) { int num_samples = kernel_data.integrator.ao_samples; float num_samples_inv = 1.0f/num_samples; float ao_factor = kernel_data.background.ao_factor; float3 ao_N; float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N); float3 ao_alpha = shader_bsdf_alpha(kg, sd); for(int j = 0; j < num_samples; j++) { float bsdf_u, bsdf_v; path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v); float3 ao_D; float ao_pdf; sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf); if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) { Ray light_ray; float3 ao_shadow; light_ray.P = ray_offset(sd->P, sd->Ng); light_ray.D = ao_D; light_ray.t = kernel_data.background.ao_distance; #ifdef __OBJECT_MOTION__ light_ray.time = sd->time; #endif light_ray.dP = sd->dP; light_ray.dD = differential3_zero(); if(!shadow_blocked(kg, state, &light_ray, &ao_shadow)) path_radiance_accum_ao(L, throughput*num_samples_inv, ao_alpha, ao_bsdf, ao_shadow, state->bounce); } } } #ifdef __SUBSURFACE__ #ifdef __VOLUME__ ccl_device void kernel_path_subsurface_update_volume_stack(KernelGlobals *kg, Ray *ray, VolumeStack *stack) { kernel_assert(kernel_data.integrator.use_volumes); Ray volume_ray = *ray; Intersection isect; int step = 0; while(step < VOLUME_STACK_SIZE && scene_intersect_volume(kg, &volume_ray, &isect)) { ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &volume_ray, 0, 0); kernel_volume_stack_enter_exit(kg, &sd, stack); /* Move ray forward. */ volume_ray.P = ray_offset(sd.P, -sd.Ng); volume_ray.t -= sd.ray_length; ++step; } } #endif ccl_device bool kernel_path_subsurface_scatter(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, Ray *ray, float3 *throughput) { float bssrdf_probability; ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability); /* modify throughput for picking bssrdf or bsdf */ *throughput *= bssrdf_probability; /* do bssrdf scatter step if we picked a bssrdf closure */ if(sc) { uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb); ShaderData bssrdf_sd[BSSRDF_MAX_HITS]; float bssrdf_u, bssrdf_v; path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v); int num_hits = subsurface_scatter_multi_step(kg, sd, bssrdf_sd, state->flag, sc, &lcg_state, bssrdf_u, bssrdf_v, false); #ifdef __VOLUME__ Ray volume_ray = *ray; bool need_update_volume_stack = kernel_data.integrator.use_volumes && sd->flag & SD_OBJECT_INTERSECTS_VOLUME; #endif /* compute lighting with the BSDF closure */ for(int hit = 0; hit < num_hits; hit++) { float3 tp = *throughput; PathState hit_state = *state; Ray hit_ray = *ray; hit_state.flag |= PATH_RAY_BSSRDF_ANCESTOR; hit_state.rng_offset += PRNG_BOUNCE_NUM; kernel_path_surface_connect_light(kg, rng, &bssrdf_sd[hit], tp, state, L); if(kernel_path_surface_bounce(kg, rng, &bssrdf_sd[hit], &tp, &hit_state, L, &hit_ray)) { #ifdef __LAMP_MIS__ hit_state.ray_t = 0.0f; #endif #ifdef __VOLUME__ if(need_update_volume_stack) { /* Setup ray from previous surface point to the new one. */ volume_ray.D = normalize_len(hit_ray.P - volume_ray.P, &volume_ray.t); kernel_path_subsurface_update_volume_stack( kg, &volume_ray, hit_state.volume_stack); /* Move volume ray forward. */ volume_ray.P = hit_ray.P; } #endif kernel_path_indirect(kg, rng, hit_ray, tp, state->num_samples, hit_state, L); /* for render passes, sum and reset indirect light pass variables * for the next samples */ path_radiance_sum_indirect(L); path_radiance_reset_indirect(L); } } return true; } return false; } #endif ccl_device float4 kernel_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, ccl_global float *buffer) { /* initialize */ PathRadiance L; float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float L_transparent = 0.0f; path_radiance_init(&L, kernel_data.film.use_light_pass); PathState state; path_state_init(kg, &state, rng, sample, &ray); #ifdef __KERNEL_DEBUG__ DebugData debug_data; debug_data_init(&debug_data); #endif /* path iteration */ for(;;) { /* intersect scene */ Intersection isect; uint visibility = path_state_ray_visibility(kg, &state); #ifdef __HAIR__ float difl = 0.0f, extmax = 0.0f; uint lcg_state = 0; if(kernel_data.bvh.have_curves) { if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) { float3 pixdiff = ray.dD.dx + ray.dD.dy; /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/ difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f; } extmax = kernel_data.curve.maximum_width; lcg_state = lcg_state_init(rng, &state, 0x51633e2d); } bool hit = scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax); #else bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f); #endif #ifdef __KERNEL_DEBUG__ if(state.flag & PATH_RAY_CAMERA) { debug_data.num_bvh_traversal_steps += isect.num_traversal_steps; } #endif #ifdef __LAMP_MIS__ if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) { /* ray starting from previous non-transparent bounce */ Ray light_ray; light_ray.P = ray.P - state.ray_t*ray.D; state.ray_t += isect.t; light_ray.D = ray.D; light_ray.t = state.ray_t; light_ray.time = ray.time; light_ray.dD = ray.dD; light_ray.dP = ray.dP; /* intersect with lamp */ float3 emission; if(indirect_lamp_emission(kg, &state, &light_ray, &emission)) path_radiance_accum_emission(&L, throughput, emission, state.bounce); } #endif #ifdef __VOLUME__ /* volume attenuation, emission, scatter */ if(state.volume_stack[0].shader != SHADER_NONE) { Ray volume_ray = ray; volume_ray.t = (hit)? isect.t: FLT_MAX; bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack); #ifdef __VOLUME_DECOUPLED__ int sampling_method = volume_stack_sampling_method(kg, state.volume_stack); bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method); if(decoupled) { /* cache steps along volume for repeated sampling */ VolumeSegment volume_segment; ShaderData volume_sd; shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce); kernel_volume_decoupled_record(kg, &state, &volume_ray, &volume_sd, &volume_segment, heterogeneous); volume_segment.sampling_method = sampling_method; /* emission */ if(volume_segment.closure_flag & SD_EMISSION) path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce); /* scattering */ VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED; if(volume_segment.closure_flag & SD_SCATTER) { bool all = false; /* direct light sampling */ kernel_branched_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, &L, all, &volume_ray, &volume_segment); /* indirect sample. if we use distance sampling and take just * one sample for direct and indirect light, we could share * this computation, but makes code a bit complex */ float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE); float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE); result = kernel_volume_decoupled_scatter(kg, &state, &volume_ray, &volume_sd, &throughput, rphase, rscatter, &volume_segment, NULL, true); } /* free cached steps */ kernel_volume_decoupled_free(kg, &volume_segment); if(result == VOLUME_PATH_SCATTERED) { if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray)) continue; else break; } else { throughput *= volume_segment.accum_transmittance; } } else #endif { /* integrate along volume segment with distance sampling */ ShaderData volume_sd; VolumeIntegrateResult result = kernel_volume_integrate( kg, &state, &volume_sd, &volume_ray, &L, &throughput, rng, heterogeneous); #ifdef __VOLUME_SCATTER__ if(result == VOLUME_PATH_SCATTERED) { /* direct lighting */ kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, &L); /* indirect light bounce */ if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray)) continue; else break; } #endif } } #endif if(!hit) { /* eval background shader if nothing hit */ if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) { L_transparent += average(throughput); #ifdef __PASSES__ if(!(kernel_data.film.pass_flag & PASS_BACKGROUND)) #endif break; } #ifdef __BACKGROUND__ /* sample background shader */ float3 L_background = indirect_background(kg, &state, &ray); path_radiance_accum_background(&L, throughput, L_background, state.bounce); #endif break; } /* setup shading */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce); float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF); shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN); /* holdout */ #ifdef __HOLDOUT__ if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) { if(kernel_data.background.transparent) { float3 holdout_weight; if(sd.flag & SD_HOLDOUT_MASK) holdout_weight = make_float3(1.0f, 1.0f, 1.0f); else holdout_weight = shader_holdout_eval(kg, &sd); /* any throughput is ok, should all be identical here */ L_transparent += average(holdout_weight*throughput); } if(sd.flag & SD_HOLDOUT_MASK) break; } #endif /* holdout mask objects do not write data passes */ kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput); /* blurring of bsdf after bounces, for rays that have a small likelihood * of following this particular path (diffuse, rough glossy) */ if(kernel_data.integrator.filter_glossy != FLT_MAX) { float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf; if(blur_pdf < 1.0f) { float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f; shader_bsdf_blur(kg, &sd, blur_roughness); } } #ifdef __EMISSION__ /* emission */ if(sd.flag & SD_EMISSION) { /* todo: is isect.t wrong here for transparent surfaces? */ float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf); path_radiance_accum_emission(&L, throughput, emission, state.bounce); } #endif /* path termination. this is a strange place to put the termination, it's * mainly due to the mixed in MIS that we use. gives too many unneeded * shader evaluations, only need emission if we are going to terminate */ float probability = path_state_terminate_probability(kg, &state, throughput); if(probability == 0.0f) { break; } else if(probability != 1.0f) { float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE); if(terminate >= probability) break; throughput /= probability; } #ifdef __AO__ /* ambient occlusion */ if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) { kernel_path_ao(kg, &sd, &L, &state, rng, throughput); } #endif #ifdef __SUBSURFACE__ /* bssrdf scatter to a different location on the same object, replacing * the closures with a diffuse BSDF */ if(sd.flag & SD_BSSRDF) { if(kernel_path_subsurface_scatter(kg, &sd, &L, &state, rng, &ray, &throughput)) break; } #endif /* direct lighting */ kernel_path_surface_connect_light(kg, rng, &sd, throughput, &state, &L); /* compute direct lighting and next bounce */ if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, &L, &ray)) break; } float3 L_sum = path_radiance_clamp_and_sum(kg, &L); kernel_write_light_passes(kg, buffer, &L, sample); #ifdef __KERNEL_DEBUG__ kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample); #endif return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent); } #ifdef __BRANCHED_PATH__ /* branched path tracing: bounce off surface and integrate indirect light */ ccl_device_noinline void kernel_branched_path_surface_indirect_light(KernelGlobals *kg, RNG *rng, ShaderData *sd, float3 throughput, float num_samples_adjust, PathState *state, PathRadiance *L) { for(int i = 0; i< sd->num_closure; i++) { const ShaderClosure *sc = &sd->closure[i]; if(!CLOSURE_IS_BSDF(sc->type)) continue; /* transparency is not handled here, but in outer loop */ if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) continue; int num_samples; if(CLOSURE_IS_BSDF_DIFFUSE(sc->type)) num_samples = kernel_data.integrator.diffuse_samples; else if(CLOSURE_IS_BSDF_BSSRDF(sc->type)) num_samples = 1; else if(CLOSURE_IS_BSDF_GLOSSY(sc->type)) num_samples = kernel_data.integrator.glossy_samples; else num_samples = kernel_data.integrator.transmission_samples; num_samples = ceil_to_int(num_samples_adjust*num_samples); float num_samples_inv = num_samples_adjust/num_samples; RNG bsdf_rng = cmj_hash(*rng, i); for(int j = 0; j < num_samples; j++) { PathState ps = *state; float3 tp = throughput; Ray bsdf_ray; if(!kernel_branched_path_surface_bounce(kg, &bsdf_rng, sd, sc, j, num_samples, &tp, &ps, L, &bsdf_ray)) continue; kernel_path_indirect(kg, rng, bsdf_ray, tp*num_samples_inv, num_samples, ps, L); /* for render passes, sum and reset indirect light pass variables * for the next samples */ path_radiance_sum_indirect(L); path_radiance_reset_indirect(L); } } } #ifdef __SUBSURFACE__ ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, Ray *ray, float3 throughput) { for(int i = 0; i< sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(!CLOSURE_IS_BSSRDF(sc->type)) continue; /* set up random number generator */ uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb); int num_samples = kernel_data.integrator.subsurface_samples; float num_samples_inv = 1.0f/num_samples; RNG bssrdf_rng = cmj_hash(*rng, i); state->flag |= PATH_RAY_BSSRDF_ANCESTOR; /* do subsurface scatter step with copy of shader data, this will * replace the BSSRDF with a diffuse BSDF closure */ for(int j = 0; j < num_samples; j++) { ShaderData bssrdf_sd[BSSRDF_MAX_HITS]; float bssrdf_u, bssrdf_v; path_branched_rng_2D(kg, &bssrdf_rng, state, j, num_samples, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v); int num_hits = subsurface_scatter_multi_step(kg, sd, bssrdf_sd, state->flag, sc, &lcg_state, bssrdf_u, bssrdf_v, true); #ifdef __VOLUME__ Ray volume_ray = *ray; bool need_update_volume_stack = kernel_data.integrator.use_volumes && sd->flag & SD_OBJECT_INTERSECTS_VOLUME; #endif /* compute lighting with the BSDF closure */ for(int hit = 0; hit < num_hits; hit++) { PathState hit_state = *state; path_state_branch(&hit_state, j, num_samples); #ifdef __VOLUME__ if(need_update_volume_stack) { /* Setup ray from previous surface point to the new one. */ float3 P = ray_offset(bssrdf_sd[hit].P, -bssrdf_sd[hit].Ng); volume_ray.D = normalize_len(P - volume_ray.P, &volume_ray.t); kernel_path_subsurface_update_volume_stack( kg, &volume_ray, hit_state.volume_stack); /* Move volume ray forward. */ volume_ray.P = P; } #endif #if defined(__EMISSION__) && defined(__BRANCHED_PATH__) /* direct light */ if(kernel_data.integrator.use_direct_light) { bool all = kernel_data.integrator.sample_all_lights_direct; kernel_branched_path_surface_connect_light(kg, rng, &bssrdf_sd[hit], &hit_state, throughput, num_samples_inv, L, all); } #endif /* indirect light */ kernel_branched_path_surface_indirect_light(kg, rng, &bssrdf_sd[hit], throughput, num_samples_inv, &hit_state, L); } } state->flag &= ~PATH_RAY_BSSRDF_ANCESTOR; } } #endif ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, ccl_global float *buffer) { /* initialize */ PathRadiance L; float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float L_transparent = 0.0f; path_radiance_init(&L, kernel_data.film.use_light_pass); PathState state; path_state_init(kg, &state, rng, sample, &ray); #ifdef __KERNEL_DEBUG__ DebugData debug_data; debug_data_init(&debug_data); #endif for(;;) { /* intersect scene */ Intersection isect; uint visibility = path_state_ray_visibility(kg, &state); #ifdef __HAIR__ float difl = 0.0f, extmax = 0.0f; uint lcg_state = 0; if(kernel_data.bvh.have_curves) { if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) { float3 pixdiff = ray.dD.dx + ray.dD.dy; /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/ difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f; } extmax = kernel_data.curve.maximum_width; lcg_state = lcg_state_init(rng, &state, 0x51633e2d); } bool hit = scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax); #else bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f); #endif #ifdef __KERNEL_DEBUG__ if(state.flag & PATH_RAY_CAMERA) { debug_data.num_bvh_traversal_steps += isect.num_traversal_steps; } #endif #ifdef __VOLUME__ /* volume attenuation, emission, scatter */ if(state.volume_stack[0].shader != SHADER_NONE) { Ray volume_ray = ray; volume_ray.t = (hit)? isect.t: FLT_MAX; bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack); #ifdef __VOLUME_DECOUPLED__ /* decoupled ray marching only supported on CPU */ /* cache steps along volume for repeated sampling */ VolumeSegment volume_segment; ShaderData volume_sd; shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce); kernel_volume_decoupled_record(kg, &state, &volume_ray, &volume_sd, &volume_segment, heterogeneous); /* direct light sampling */ if(volume_segment.closure_flag & SD_SCATTER) { volume_segment.sampling_method = volume_stack_sampling_method(kg, state.volume_stack); bool all = kernel_data.integrator.sample_all_lights_direct; kernel_branched_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, &L, all, &volume_ray, &volume_segment); /* indirect light sampling */ int num_samples = kernel_data.integrator.volume_samples; float num_samples_inv = 1.0f/num_samples; for(int j = 0; j < num_samples; j++) { /* workaround to fix correlation bug in T38710, can find better solution * in random number generator later, for now this is done here to not impact * performance of rendering without volumes */ RNG tmp_rng = cmj_hash(*rng, state.rng_offset); PathState ps = state; Ray pray = ray; float3 tp = throughput; /* branch RNG state */ path_state_branch(&ps, j, num_samples); /* scatter sample. if we use distance sampling and take just one * sample for direct and indirect light, we could share this * computation, but makes code a bit complex */ float rphase = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_PHASE); float rscatter = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_SCATTER_DISTANCE); VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg, &ps, &pray, &volume_sd, &tp, rphase, rscatter, &volume_segment, NULL, false); (void)result; kernel_assert(result == VOLUME_PATH_SCATTERED); if(kernel_path_volume_bounce(kg, rng, &volume_sd, &tp, &ps, &L, &pray)) { kernel_path_indirect(kg, rng, pray, tp*num_samples_inv, num_samples, ps, &L); /* for render passes, sum and reset indirect light pass variables * for the next samples */ path_radiance_sum_indirect(&L); path_radiance_reset_indirect(&L); } } } /* emission and transmittance */ if(volume_segment.closure_flag & SD_EMISSION) path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce); throughput *= volume_segment.accum_transmittance; /* free cached steps */ kernel_volume_decoupled_free(kg, &volume_segment); #else /* GPU: no decoupled ray marching, scatter probalistically */ int num_samples = kernel_data.integrator.volume_samples; float num_samples_inv = 1.0f/num_samples; /* todo: we should cache the shader evaluations from stepping * through the volume, for now we redo them multiple times */ for(int j = 0; j < num_samples; j++) { PathState ps = state; Ray pray = ray; ShaderData volume_sd; float3 tp = throughput * num_samples_inv; /* branch RNG state */ path_state_branch(&ps, j, num_samples); VolumeIntegrateResult result = kernel_volume_integrate( kg, &ps, &volume_sd, &volume_ray, &L, &tp, rng, heterogeneous); #ifdef __VOLUME_SCATTER__ if(result == VOLUME_PATH_SCATTERED) { /* todo: support equiangular, MIS and all light sampling. * alternatively get decoupled ray marching working on the GPU */ kernel_path_volume_connect_light(kg, rng, &volume_sd, tp, &state, &L); if(kernel_path_volume_bounce(kg, rng, &volume_sd, &tp, &ps, &L, &pray)) { kernel_path_indirect(kg, rng, pray, tp, num_samples, ps, &L); /* for render passes, sum and reset indirect light pass variables * for the next samples */ path_radiance_sum_indirect(&L); path_radiance_reset_indirect(&L); } } #endif } /* todo: avoid this calculation using decoupled ray marching */ kernel_volume_shadow(kg, &state, &volume_ray, &throughput); #endif } #endif if(!hit) { /* eval background shader if nothing hit */ if(kernel_data.background.transparent) { L_transparent += average(throughput); #ifdef __PASSES__ if(!(kernel_data.film.pass_flag & PASS_BACKGROUND)) #endif break; } #ifdef __BACKGROUND__ /* sample background shader */ float3 L_background = indirect_background(kg, &state, &ray); path_radiance_accum_background(&L, throughput, L_background, state.bounce); #endif break; } /* setup shading */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce); shader_eval_surface(kg, &sd, 0.0f, state.flag, SHADER_CONTEXT_MAIN); shader_merge_closures(&sd); /* holdout */ #ifdef __HOLDOUT__ if(sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) { if(kernel_data.background.transparent) { float3 holdout_weight; if(sd.flag & SD_HOLDOUT_MASK) holdout_weight = make_float3(1.0f, 1.0f, 1.0f); else holdout_weight = shader_holdout_eval(kg, &sd); /* any throughput is ok, should all be identical here */ L_transparent += average(holdout_weight*throughput); } if(sd.flag & SD_HOLDOUT_MASK) break; } #endif /* holdout mask objects do not write data passes */ kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput); #ifdef __EMISSION__ /* emission */ if(sd.flag & SD_EMISSION) { float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf); path_radiance_accum_emission(&L, throughput, emission, state.bounce); } #endif /* transparency termination */ if(state.flag & PATH_RAY_TRANSPARENT) { /* path termination. this is a strange place to put the termination, it's * mainly due to the mixed in MIS that we use. gives too many unneeded * shader evaluations, only need emission if we are going to terminate */ float probability = path_state_terminate_probability(kg, &state, throughput); if(probability == 0.0f) { break; } else if(probability != 1.0f) { float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE); if(terminate >= probability) break; throughput /= probability; } } #ifdef __AO__ /* ambient occlusion */ if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) { kernel_branched_path_ao(kg, &sd, &L, &state, rng, throughput); } #endif #ifdef __SUBSURFACE__ /* bssrdf scatter to a different location on the same object */ if(sd.flag & SD_BSSRDF) { kernel_branched_path_subsurface_scatter(kg, &sd, &L, &state, rng, &ray, throughput); } #endif if(!(sd.flag & SD_HAS_ONLY_VOLUME)) { PathState hit_state = state; #ifdef __EMISSION__ /* direct light */ if(kernel_data.integrator.use_direct_light) { bool all = kernel_data.integrator.sample_all_lights_direct; kernel_branched_path_surface_connect_light(kg, rng, &sd, &hit_state, throughput, 1.0f, &L, all); } #endif /* indirect light */ kernel_branched_path_surface_indirect_light(kg, rng, &sd, throughput, 1.0f, &hit_state, &L); /* continue in case of transparency */ throughput *= shader_bsdf_transparency(kg, &sd); if(is_zero(throughput)) break; } path_state_next(kg, &state, LABEL_TRANSPARENT); ray.P = ray_offset(sd.P, -sd.Ng); ray.t -= sd.ray_length; /* clipping works through transparent */ #ifdef __RAY_DIFFERENTIALS__ ray.dP = sd.dP; ray.dD.dx = -sd.dI.dx; ray.dD.dy = -sd.dI.dy; #endif #ifdef __VOLUME__ /* enter/exit volume */ kernel_volume_stack_enter_exit(kg, &sd, state.volume_stack); #endif } float3 L_sum = path_radiance_clamp_and_sum(kg, &L); kernel_write_light_passes(kg, buffer, &L, sample); #ifdef __KERNEL_DEBUG__ kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample); #endif return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent); } #endif ccl_device_inline void kernel_path_trace_setup(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int x, int y, RNG *rng, Ray *ray) { float filter_u; float filter_v; int num_samples = kernel_data.integrator.aa_samples; path_rng_init(kg, rng_state, sample, num_samples, rng, x, y, &filter_u, &filter_v); /* sample camera ray */ float lens_u = 0.0f, lens_v = 0.0f; if(kernel_data.cam.aperturesize > 0.0f) path_rng_2D(kg, rng, sample, num_samples, PRNG_LENS_U, &lens_u, &lens_v); float time = 0.0f; #ifdef __CAMERA_MOTION__ if(kernel_data.cam.shuttertime != -1.0f) time = path_rng_1D(kg, rng, sample, num_samples, PRNG_TIME); #endif camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, ray); } ccl_device void kernel_path_trace(KernelGlobals *kg, ccl_global float *buffer, ccl_global uint *rng_state, int sample, int x, int y, int offset, int stride) { /* buffer offset */ int index = offset + x + y*stride; int pass_stride = kernel_data.film.pass_stride; rng_state += index; buffer += index*pass_stride; /* initialize random numbers and ray */ RNG rng; Ray ray; kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray); /* integrate */ float4 L; if(ray.t != 0.0f) L = kernel_path_integrate(kg, &rng, sample, ray, buffer); else L = make_float4(0.0f, 0.0f, 0.0f, 0.0f); /* accumulate result in output buffer */ kernel_write_pass_float4(buffer, sample, L); path_rng_end(kg, rng_state, rng); } #ifdef __BRANCHED_PATH__ ccl_device void kernel_branched_path_trace(KernelGlobals *kg, ccl_global float *buffer, ccl_global uint *rng_state, int sample, int x, int y, int offset, int stride) { /* buffer offset */ int index = offset + x + y*stride; int pass_stride = kernel_data.film.pass_stride; rng_state += index; buffer += index*pass_stride; /* initialize random numbers and ray */ RNG rng; Ray ray; kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray); /* integrate */ float4 L; if(ray.t != 0.0f) L = kernel_branched_path_integrate(kg, &rng, sample, ray, buffer); else L = make_float4(0.0f, 0.0f, 0.0f, 0.0f); /* accumulate result in output buffer */ kernel_write_pass_float4(buffer, sample, L); path_rng_end(kg, rng_state, rng); } #endif CCL_NAMESPACE_END