/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN #ifdef __VOLUME_SCATTER__ ccl_device_inline void kernel_path_volume_connect_light( KernelGlobals *kg, ShaderData *sd, ShaderData *emission_sd, float3 throughput, ccl_addr_space PathState *state, PathRadiance *L) { #ifdef __EMISSION__ if(!kernel_data.integrator.use_direct_light) return; /* sample illumination from lights to find path contribution */ float light_u, light_v; path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v); Ray light_ray; BsdfEval L_light; LightSample ls; bool is_lamp; /* connect to light from given point where shader has been evaluated */ light_ray.time = sd->time; if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) { float terminate = path_state_rng_light_termination(kg, state); if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp); } } } #endif /* __EMISSION__ */ } #ifdef __KERNEL_GPU__ ccl_device_noinline #else ccl_device #endif bool kernel_path_volume_bounce( KernelGlobals *kg, ShaderData *sd, ccl_addr_space float3 *throughput, ccl_addr_space PathState *state, PathRadianceState *L_state, ccl_addr_space Ray *ray) { /* sample phase function */ float phase_pdf; BsdfEval phase_eval; float3 phase_omega_in; differential3 phase_domega_in; float phase_u, phase_v; path_state_rng_2D(kg, state, PRNG_BSDF_U, &phase_u, &phase_v); int label; label = shader_volume_phase_sample(kg, sd, phase_u, phase_v, &phase_eval, &phase_omega_in, &phase_domega_in, &phase_pdf); if(phase_pdf == 0.0f || bsdf_eval_is_zero(&phase_eval)) return false; /* modify throughput */ path_radiance_bsdf_bounce(kg, L_state, throughput, &phase_eval, phase_pdf, state->bounce, label); /* set labels */ state->ray_pdf = phase_pdf; #ifdef __LAMP_MIS__ state->ray_t = 0.0f; #endif state->min_ray_pdf = fminf(phase_pdf, state->min_ray_pdf); /* update path state */ path_state_next(kg, state, label); /* setup ray */ ray->P = sd->P; ray->D = phase_omega_in; ray->t = FLT_MAX; #ifdef __RAY_DIFFERENTIALS__ ray->dP = sd->dP; ray->dD = phase_domega_in; #endif return true; } #ifndef __SPLIT_KERNEL__ ccl_device void kernel_branched_path_volume_connect_light( KernelGlobals *kg, ShaderData *sd, ShaderData *emission_sd, float3 throughput, ccl_addr_space PathState *state, PathRadiance *L, bool sample_all_lights, Ray *ray, const VolumeSegment *segment) { #ifdef __EMISSION__ if(!kernel_data.integrator.use_direct_light) return; Ray light_ray; BsdfEval L_light; bool is_lamp; light_ray.time = sd->time; if(sample_all_lights) { /* lamp sampling */ for(int i = 0; i < kernel_data.integrator.num_all_lights; i++) { if(UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce))) continue; int num_samples = light_select_num_samples(kg, i); float num_samples_inv = 1.0f/(num_samples*kernel_data.integrator.num_all_lights); uint lamp_rng_hash = cmj_hash(state->rng_hash, i); for(int j = 0; j < num_samples; j++) { /* sample random position on given light */ float light_u, light_v; path_branched_rng_2D(kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v); LightSample ls; lamp_light_sample(kg, i, light_u, light_v, ray->P, &ls); float3 tp = throughput; /* sample position on volume segment */ float rphase = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_PHASE_CHANNEL); float rscatter = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_SCATTER_DISTANCE); VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg, state, ray, sd, &tp, rphase, rscatter, segment, (ls.t != FLT_MAX)? &ls.P: NULL, false); /* todo: split up light_sample so we don't have to call it again with new position */ if(result == VOLUME_PATH_SCATTERED && lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) { if(kernel_data.integrator.pdf_triangles != 0.0f) ls.pdf *= 2.0f; float terminate = path_branched_rng_light_termination(kg, state->rng_hash, state, j, num_samples); if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(L, state, tp*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp); } } } } } /* mesh light sampling */ if(kernel_data.integrator.pdf_triangles != 0.0f) { int num_samples = kernel_data.integrator.mesh_light_samples; float num_samples_inv = 1.0f/num_samples; for(int j = 0; j < num_samples; j++) { /* sample random position on random triangle */ float light_u, light_v; path_branched_rng_2D(kg, state->rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v); /* only sample triangle lights */ if(kernel_data.integrator.num_all_lights) light_u = 0.5f*light_u; LightSample ls; light_sample(kg, light_u, light_v, sd->time, ray->P, state->bounce, &ls); float3 tp = throughput; /* sample position on volume segment */ float rphase = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_PHASE_CHANNEL); float rscatter = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_SCATTER_DISTANCE); VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg, state, ray, sd, &tp, rphase, rscatter, segment, (ls.t != FLT_MAX)? &ls.P: NULL, false); /* todo: split up light_sample so we don't have to call it again with new position */ if(result == VOLUME_PATH_SCATTERED && light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) { if(kernel_data.integrator.num_all_lights) ls.pdf *= 2.0f; float terminate = path_branched_rng_light_termination(kg, state->rng_hash, state, j, num_samples); if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(L, state, tp*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp); } } } } } } else { /* sample random position on random light */ float light_u, light_v; path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v); LightSample ls; light_sample(kg, light_u, light_v, sd->time, ray->P, state->bounce, &ls); float3 tp = throughput; /* sample position on volume segment */ float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL); float rscatter = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE); VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg, state, ray, sd, &tp, rphase, rscatter, segment, (ls.t != FLT_MAX)? &ls.P: NULL, false); /* todo: split up light_sample so we don't have to call it again with new position */ if(result == VOLUME_PATH_SCATTERED && light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) { /* sample random light */ float terminate = path_state_rng_light_termination(kg, state); if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(L, state, tp, &L_light, shadow, 1.0f, is_lamp); } } } } #endif /* __EMISSION__ */ } #endif /* __SPLIT_KERNEL__ */ #endif /* __VOLUME_SCATTER__ */ CCL_NAMESPACE_END