/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License */ CCL_NAMESPACE_BEGIN ccl_device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow) { *shadow = make_float3(1.0f, 1.0f, 1.0f); if(ray->t == 0.0f) return false; Intersection isect; #ifdef __HAIR__ bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect, NULL, 0.0f, 0.0f); #else bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect); #endif #ifdef __TRANSPARENT_SHADOWS__ if(result && kernel_data.integrator.transparent_shadows) { /* transparent shadows work in such a way to try to minimize overhead * in cases where we don't need them. after a regular shadow ray is * cast we check if the hit primitive was potentially transparent, and * only in that case start marching. this gives on extra ray cast for * the cases were we do want transparency. * * also note that for this to work correct, multi close sampling must * be used, since we don't pass a random number to shader_eval_surface */ if(shader_transparent_shadow(kg, &isect)) { float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float3 Pend = ray->P + ray->D*ray->t; int bounce = state->transparent_bounce; #ifdef __VOLUME__ PathState ps = *state; #endif for(;;) { if(bounce >= kernel_data.integrator.transparent_max_bounce) { return true; } else if(bounce >= kernel_data.integrator.transparent_min_bounce) { /* todo: get random number somewhere for probabilistic terminate */ #if 0 float probability = average(throughput); float terminate = 0.0f; if(terminate >= probability) return true; throughput /= probability; #endif } #ifdef __HAIR__ if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect, NULL, 0.0f, 0.0f)) { #else if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect)) { #endif #ifdef __VOLUME__ /* attenuation for last line segment towards light */ if(ps.volume_stack[0].shader != SHADER_NONE) kernel_volume_shadow(kg, &ps, ray, &throughput); #endif *shadow *= throughput; return false; } if(!shader_transparent_shadow(kg, &isect)) return true; #ifdef __VOLUME__ /* attenuation between last surface and next surface */ if(ps.volume_stack[0].shader != SHADER_NONE) { Ray segment_ray = *ray; segment_ray.t = isect.t; kernel_volume_shadow(kg, &ps, &segment_ray, &throughput); } #endif /* setup shader data at surface */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, ray, state->bounce+1); /* attenuation from transparent surface */ if(!(sd.flag & SD_HAS_ONLY_VOLUME)) { shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW); throughput *= shader_bsdf_transparency(kg, &sd); } /* move ray forward */ ray->P = ray_offset(sd.P, -sd.Ng); if(ray->t != FLT_MAX) ray->D = normalize_len(Pend - ray->P, &ray->t); #ifdef __VOLUME__ /* exit/enter volume */ kernel_volume_stack_enter_exit(kg, &sd, ps.volume_stack); #endif bounce++; } } } #ifdef __VOLUME__ else if(!result && state->volume_stack[0].shader != SHADER_NONE) { /* apply attenuation from current volume shader */ kernel_volume_shadow(kg, state, ray, shadow); } #endif #endif return result; } CCL_NAMESPACE_END