/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN #ifdef __SHADOW_RECORD_ALL__ /* Shadow function to compute how much light is blocked, CPU variation. * * We trace a single ray. If it hits any opaque surface, or more than a given * number of transparent surfaces is hit, then we consider the geometry to be * entirely blocked. If not, all transparent surfaces will be recorded and we * will shade them one by one to determine how much light is blocked. This all * happens in one scene intersection function. * * Recording all hits works well in some cases but may be slower in others. If * we have many semi-transparent hairs, one intersection may be faster because * you'd be reinteresecting the same hairs a lot with each step otherwise. If * however there is mostly binary transparency then we may be recording many * unnecessary intersections when one of the first surfaces blocks all light. * * From tests in real scenes it seems the performance loss is either minimal, * or there is a performance increase anyway due to avoiding the need to send * two rays with transparent shadows. * * This is CPU only because of qsort, and malloc or high stack space usage to * record all these intersections. */ ccl_device_noinline int shadow_intersections_compare(const void *a, const void *b) { const Intersection *isect_a = (const Intersection*)a; const Intersection *isect_b = (const Intersection*)b; if(isect_a->t < isect_b->t) return -1; else if(isect_a->t > isect_b->t) return 1; else return 0; } #define STACK_MAX_HITS 64 ccl_device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow) { *shadow = make_float3(1.0f, 1.0f, 1.0f); if(ray->t == 0.0f) return false; bool blocked; if(kernel_data.integrator.transparent_shadows) { /* check transparent bounces here, for volume scatter which can do * lighting before surface path termination is checked */ if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce) return true; /* intersect to find an opaque surface, or record all transparent surface hits */ Intersection hits_stack[STACK_MAX_HITS]; Intersection *hits = hits_stack; uint max_hits = kernel_data.integrator.transparent_max_bounce - state->transparent_bounce - 1; /* prefer to use stack but use dynamic allocation if too deep max hits * we need max_hits + 1 storage space due to the logic in * scene_intersect_shadow_all which will first store and then check if * the limit is exceeded */ if(max_hits + 1 > STACK_MAX_HITS) hits = (Intersection*)malloc(sizeof(Intersection)*(max_hits + 1)); uint num_hits; blocked = scene_intersect_shadow_all(kg, ray, hits, max_hits, &num_hits); /* if no opaque surface found but we did find transparent hits, shade them */ if(!blocked && num_hits > 0) { float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float3 Pend = ray->P + ray->D*ray->t; float last_t = 0.0f; int bounce = state->transparent_bounce; Intersection *isect = hits; #ifdef __VOLUME__ PathState ps = *state; #endif qsort(hits, num_hits, sizeof(Intersection), shadow_intersections_compare); for(int hit = 0; hit < num_hits; hit++, isect++) { /* adjust intersection distance for moving ray forward */ float new_t = isect->t; isect->t -= last_t; /* skip hit if we did not move forward, step by step raytracing * would have skipped it as well then */ if(last_t == new_t) continue; last_t = new_t; #ifdef __VOLUME__ /* attenuation between last surface and next surface */ if(ps.volume_stack[0].shader != SHADER_NONE) { Ray segment_ray = *ray; segment_ray.t = isect->t; kernel_volume_shadow(kg, &ps, &segment_ray, &throughput); } #endif /* setup shader data at surface */ ShaderData sd; shader_setup_from_ray(kg, &sd, isect, ray, state->bounce+1, bounce); /* attenuation from transparent surface */ if(!(sd.flag & SD_HAS_ONLY_VOLUME)) { shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW); throughput *= shader_bsdf_transparency(kg, &sd); } /* stop if all light is blocked */ if(is_zero(throughput)) { /* free dynamic storage */ if(hits != hits_stack) free(hits); return true; } /* move ray forward */ ray->P = sd.P; if(ray->t != FLT_MAX) ray->D = normalize_len(Pend - ray->P, &ray->t); #ifdef __VOLUME__ /* exit/enter volume */ kernel_volume_stack_enter_exit(kg, &sd, ps.volume_stack); #endif bounce++; } #ifdef __VOLUME__ /* attenuation for last line segment towards light */ if(ps.volume_stack[0].shader != SHADER_NONE) kernel_volume_shadow(kg, &ps, ray, &throughput); #endif *shadow = throughput; if(hits != hits_stack) free(hits); return is_zero(throughput); } /* free dynamic storage */ if(hits != hits_stack) free(hits); } else { Intersection isect; blocked = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect, NULL, 0.0f, 0.0f); } #ifdef __VOLUME__ if(!blocked && state->volume_stack[0].shader != SHADER_NONE) { /* apply attenuation from current volume shader */ kernel_volume_shadow(kg, state, ray, shadow); } #endif return blocked; } #undef STACK_MAX_HITS #else /* Shadow function to compute how much light is blocked, GPU variation. * * Here we raytrace from one transparent surface to the next step by step. * To minimize overhead in cases where we don't need transparent shadows, we * first trace a regular shadow ray. We check if the hit primitive was * potentially transparent, and only in that case start marching. this gives * one extra ray cast for the cases were we do want transparency. */ ccl_device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow) { *shadow = make_float3(1.0f, 1.0f, 1.0f); if(ray->t == 0.0f) return false; Intersection isect; bool blocked = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect, NULL, 0.0f, 0.0f); #ifdef __TRANSPARENT_SHADOWS__ if(blocked && kernel_data.integrator.transparent_shadows) { if(shader_transparent_shadow(kg, &isect)) { float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float3 Pend = ray->P + ray->D*ray->t; int bounce = state->transparent_bounce; #ifdef __VOLUME__ PathState ps = *state; #endif for(;;) { if(bounce >= kernel_data.integrator.transparent_max_bounce) return true; if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect, NULL, 0.0f, 0.0f)) { #ifdef __VOLUME__ /* attenuation for last line segment towards light */ if(ps.volume_stack[0].shader != SHADER_NONE) kernel_volume_shadow(kg, &ps, ray, &throughput); #endif *shadow *= throughput; return false; } if(!shader_transparent_shadow(kg, &isect)) return true; #ifdef __VOLUME__ /* attenuation between last surface and next surface */ if(ps.volume_stack[0].shader != SHADER_NONE) { Ray segment_ray = *ray; segment_ray.t = isect.t; kernel_volume_shadow(kg, &ps, &segment_ray, &throughput); } #endif /* setup shader data at surface */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, ray, state->bounce+1, bounce); /* attenuation from transparent surface */ if(!(sd.flag & SD_HAS_ONLY_VOLUME)) { shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW); throughput *= shader_bsdf_transparency(kg, &sd); } if(is_zero(throughput)) return true; /* move ray forward */ ray->P = ray_offset(sd.P, -sd.Ng); if(ray->t != FLT_MAX) ray->D = normalize_len(Pend - ray->P, &ray->t); #ifdef __VOLUME__ /* exit/enter volume */ kernel_volume_stack_enter_exit(kg, &sd, ps.volume_stack); #endif bounce++; } } } #ifdef __VOLUME__ else if(!blocked && state->volume_stack[0].shader != SHADER_NONE) { /* apply attenuation from current volume shader */ kernel_volume_shadow(kg, state, ray, shadow); } #endif #endif return blocked; } #endif CCL_NAMESPACE_END